Современный образовательный процесс представляет собой упорядоченное множество ситуаций, событий и действий, обеспечивающих передачу и усвоение учебной информации с накоплением профессиональных знаний и умений и формированием личностных качеств обучаемых.
Структурными составляющими такого процесса являются обучаемый субъект (учащийся, студент и т.п.), преподаватель (учитель), цели и содержание обучения, средства информационного и методического взаимодействия, результативный уровень профессиональной подготовки.
Идентификация и прогнозирование состояния и эффективности образовательного процесса связаны с использованием агентных технологий имитации взаимодействия интеллектуальных агентов классов «преподаватель» и «студент» в сложных ситуациях с нечеткой информацией и конфликтными состояниями по аналогии с интеллектуальным поведением человека в подобных условиях.
Процесс обучения в вузе можно представить в виде трех основных взаимодействующих компонентов: обучаемый интеллектуальный агент AgStud, имитирующий процесс накопления знаний; интеллектуальный агент AgTeacher, пе- редающий знания обучаемому агенту и оценивающий степень их накопления; объектный блок «среда обучения», отражающий условия обеспечения учебного процесса (расписание занятий, учебно-методические указания, оснащенность аудиторий и т.п.).
Параметрическое описание модели
Интеллектуальный агент AgStud описывается переменными и параметрами когнитивного Co, психофизиологического Ps, эмоционального Em и социального So состояний в виде множества векторов: AgStud={Co, Ps, Em, So}.
Векторы когнитивного и психофизиологического состояний i-го агента включают исходные неизменяющиеся параметры агента cs, влияющие на накопление знаний (cs1 – уровень интеллекта, cs2 – внимание, cs3 – зрительная память, cs4 – вербальная память, cs5 – ассоциативная память, cs6 – общие математические способности, cs7 – арифметический счет, cs8 – установление закономерностей), и переменные ca, изменяющиеся в процессе обучения (ca1 – уровень априорных знаний J0, ca2 – текущий уровень знаний J, ca3 – уровень остаточной информации и знаний Jост, ca4 – коэффициент эффективности переработки информации R, ca5 – скорость восприятия информации l).
Вектор эмоционального состояния i-го агента Emi={ei1, ei2, ei3, ei4} отражает параметры состояния (ei1 – психологическая напряженность, ei2 – психотип) и переменные состояния (ei3 – степень удовлетворенности обучением, ei4 – эмоциональная реакция).
Вектор социального состояния агента Soi={si1, si2, si3} содержит параметры si1 – индекс социометрического статуса, si2 – коэффициент взаимодействия и переменную si3 – удовлетворенность социальным положением.
Описание агента может быть дополнено вектором личностных характеристик Pсi={pi1, ..., pi4}, включающим параметры состояния (pi1 – сознательность, pi2 – трудолюбие) и переменные (pi3 – мотивация обучения, pi4 – быстрота интеллектуальной утомляемости студента).
Параметры состояния определяются в результате проведения психологических тестов в группе студентов по заданным характеристикам и рассчитываются в относительных единицах с выделением четырех качественных уровней общего исходного состояния агента AgStud с предполагаемым результатом обучения (отлично, хорошо, удовлетворительно, плохо).
Процесс усвоения изучаемого материала и накопления информации во времени можно описать уравнением
, (1)
где J(t) – количество информации, накопленное студентом, Кб; I(t) – количество представляемой информации, Кб; – коэффициент эффективности переработки информации; Jt(t) – количество воспринятой текущей информации, Кб; J0 – количественная оценка априорных знаний; t – текущее время, ед.вр.
Важнейшей характеристикой интеллектуального состояния агента AgStud является психофизиологическая скорость восприятия студентом текущей информации или его пропускная способность lt в текущий момент, Кб/ед.вр., выражаемая производной . (2)
Пропускная способность является функцией интеллектуального состояния студента и его априорных знаний, эмоционального состояния и эмоциональной реакции и изменяется в процессе обучения в зависимости от объема представленной I(t) и воспринятой Jt(t) информации, способа представления I(t), степени тренированности и других факторов [1].
Исходное значение l0i i-го студента можно выразить уравнениями регрессии от исходных параметров когнитивного и эмоционального состояний i-го агента на основе корреляционного и регрессионного анализа экспериментальных данных в виде
, i=1, …, N, (3)
где pij – коэффициенты линейной множественной регрессии; cij – j-й параметр когнитивного состояния i-го студента; eik – k-й параметр эмоционального состояния i-го студента.
Допуская, что λi не изменяется в процессе восприятия текущей информации и зависит главным образом от уровня априорных знаний и степени тренированности, можно оценить эффективность процесса накопления знаний i-м студентом коэффициентом Ri как отношение воспринятой им информации Jti(t)=li×t к представленной I(t) в виде
,
i=1, …, N. (4)
В соответствии с уравнением (1) и опытными данными [2] некоторый нормированный процесс накопления знаний аппроксимируется в первом приближении функцией вида
, (5)
где It – объем информации, предъявляемый преподавателем в момент t; λ – пропускная способность обучаемого в заданных условиях.
Эмоциональная реакция Qi студента на процесс обучения (удовольствие, ожидание, обучение, стремление, безразличие, отрицание и т.п.) зависит от его эмоционального состояния в точке эмоционального гиперпространства c координатами qj, j=1, …, 15 (счастье, грусть, злость, скука, сомнение, надежда, страх, интерес, презрение, отвращение, разочарование, удивление, гордость, стыд, чувство вины), и может быть определена множественной регрессией [3] ее конкретного вида от значений координат:
, i=1, …, 6, (6)
где qj – субъективная оценка уровня эмоции (j-й координаты) в баллах; mi – число эмоций, имеющих сильную корреляционную связь с областью i-й эмоциональной реакции агента (i=1, …, 6).
При известных или задаваемых оценках координат вектора эмоционального состояния в 15-мерном эмоциональном пространстве после очередного события определяется область наиболее интенсивной эмоциональной реакции, обусловливающей дальнейшие действия агента [3, 4].
Коэффициент психологической напряженности агента определяется отношением абсолютного количества антагонистических связей к общему количеству взаимодействующих агентов.
Социальная составляющая агента определяется индексом социометрического статуса Ci, характеризующим степень общительности студента и его отношение к коллективу в целом, и рассчитывается с помощью экспертного опроса по формуле , i=1, …, N, (7)
где Sij, Sji – количество прямых и обратных связей i-го агента с другими агентами AgStudj в группе с оценками сотрудничества (+1), антагонизма (–1) и безразличия (0) во взаимодействии; N – число студентов в группе.
Коэффициент взаимодействия i-го агента определяется также из матрицы взаимосвязей как отношение абсолютного количества неантагонистических отношений к количеству взаимодействующих агентов.
Агент «преподаватель» AgTeach характеризуется набором векторов состояния: AgTeach={Сo, Em}, где Co={c1i, ci2, ci3} – вектор когнитивного состояния (с1 – уровень знаний, c2 – уровень умений, c3 – степень владения предметной областью); Emi={e1i, e2i} – вектор эмоционального состояния (e1 – нервно-психологическая устойчивость, e2 – темперамент личности, e3 – степень удовлетворенности результатами обучения студентов).
Агент AgTeacher в учебном процессе имеет две фазы деятельности – преподавание требуемого материала с передачей знаний и контроль знаний агента AgStud с идентификацией его индивидуального состояния и рейтинговой оценкой в целом.
Математические модели (1)–(7) и продукционные правила поведения агентов позволяют составить описание состояния и поведения агентов в зависимости от ситуации взаимодействия с другими агентами и средой.
Мультиагентная модель образовательного процесса Learning
Данная модель в универсальной имитационной системе Simplex3 [5] включает пять базисных компонентов (рис. 1), а именно: агенты класса AgStud, агент AgTeach, компонент Area «среда обучения», компонент Statistic «текущая успеваемость и оценка эффективности», компонент Connektion для адресного обмена сообщениями между агентами AgStud и AgTeach.
Time[k] – время начала k-го цикла аудиторных занятий, k=1, …, 3; V[k] – характеристики среды обучения (оснащенность компьютерами, мультимедийными средствами, Интернетом и т.п.); Vymk – учебные планы и графики лекционных, практических и лабораторных занятий на семестр; Control – информация о времени проведения и виде контроля; J[i] – информация о накопленных знаниях i-го агента; Ipi – поток информации от преподавателя; MassegeStud – мобильный компонент с сообщениями от агентов AgStud; MassegeTeach – мобильный компонент сообщений от агента AgTeach; Ball[i] – оценка i-го студента.
Каждый агент описывается на объектно-ориентированном языке описания моделей Simplex-МDL (Model Description Language) базисным MDL-компонентом с декларированием переменных состояния, сенсорных связей и описанием динамики поведения в виде алгебраических и дифференциальных уравнений или последовательности событий [5]. Базисные компоненты объединяются в общую мультиагентную модель системы с помощью сенсорных связей и мобильных компонентов для адресной передачи сообщений между агентами.
Из блока Area (среда обучения) агентам AgStud (студент) и AgTeach (преподаватель) по каналам сенсорных связей передаются: организационная информация о времени начала лекционных, практических и лабораторных занятий Time[k], k=1, ..., 3; характеристики среды обучения V[k] (оснащенность компьютерами, мультимедийными средствами, Интернетом и т.п.); план лекционных, практических и лабораторных занятий на семестр Vymk; информация о времени проведения и типе контроля Control накопленных знаний Ji.
От агента AgTeach каждому агенту AgStud через компонент Conneсt поступают поток учебной информации I, программа контроля ActControl и оценка, выставляемая преподавателем i-му студенту, Balli.
В свою очередь, агент AgTeach через компонент Conneсt получает от агентов AgStudi как информацию о накопленных знаниях Ji i-го агента, о социальной потребности его в работе с преподавателем, о целях обучения, об эмоциональной реакции, так и оценку качества преподавания и др.
Обмен сообщениями между агентами обеспечивается, с одной стороны, мобильным компонентом MеssаgеStud, передающим информацию от агентов AgStudi агенту AgTeach об эмоциональной реакции, социальной потребности, запрос о помощи, и, с другой стороны, мобильным компонентом MеssаgеTeach с персональной информацией i-му студенту (оценка успеваемости, дополнительный контроль, поощрение или порицание, дополнительные занятия и т.п.).
Общий алгоритм образовательного цикла показан на рисунке 2.
В начале цикла моделирования задаются характеристики агента AgStud и рассчитываются исходные значения параметров и переменных векторов эмоционального, когнитивного, социального и личностного состояний.
Далее агенту сообщаются расписание лекционных, практических, лабораторных занятий и свободное время, в которое он может заниматься самостоятельно или с другими агентами AgStud, консультациями с AgTeacher или просто отды- хать [4].
В зависимости от уровня эмоциональной напряженности, когнитивного состояния и других факторов происходит процесс накопления знаний в соответствии с математическим описанием (1)–(7). На лекционных занятиях агент AgStud повышает уровень теоретических знаний, а на практических и лабораторных – степень тренированности c lmр.
После проведения занятий агент AgStud оценивает уровень полученных знаний. При неудовлетворительной оценке следует переход в фазу самостоятельного пополнения базы знаний с индивидуальной или коллективной стратегией. Оценка уровня полученных знаний в большинстве случаев связана с переговорным процессом и достижением согласия путем интерактивного обмена информацией в форме вопросов и ответов, на основе которого выставляется рейтинговая оценка Ball.
Результаты имитационного моделирования процесса накопления знаний
В результате имитационного моделирования на основе исходных данных и параметрических описаний получены кривые изменения уровня знаний студента в процессе активной и самостоятельной фаз обучения (рис. 3 и 4).
На графике рисунка 3 на отрезке от 0 до 4,5 ч. наблюдается рост знаний агентов в активной фазе обучения, где наиболее успешное накопление знаний показывает агент AgStud1 за счет высоких когнитивных, эмоциональных, социальных и личностных характеристик и уровня априорных знаний. Агент AgStud2 по сравнению с AgStud1 имеет более низкие когнитивные характеристики и отстает в усвоении представляемой информации. Однако за счет высоких личностных характеристик (стремления к обучению) он приближается к уровню знаний агента AgStud1.
Состояние агента AgStud3 соответствует удовлетворительному уровню, но при хорошей самостоятельной проработке материала и активном взаимодействии имеет более высокий уровень знаний, чем агент AgStud4, состояние которого на неудовлетворительном уровне.
На рисунке 4 показано изменение общей эффективности обучения агентов с учетом изменения их когнитивного Co, эмоционального Qi и социального So состояний в цикле учебного процесса с активной (0–4,5 ч.) и самостоятельной (4,5–7,5 ч.) фазами работы.
Исходя из результатов моделирования можно сделать выводы о том, что учащимся следует ориентироваться на получение знаний, даваемых преподавателями, при этом необходимо уделять достаточно времени самоподготовке. В качестве управляющего воздействия можно выделить контроль полученных знаний как наиболее эффективный.
Предложенные модель и алгоритмы дают возможность получать статистику накопления знаний агентов, прогнозировать и оценивать образовательный процесс в зависимости от психофизиологических свойств агентов и их целей, легко выявлять факторы, оказывающие влияние на накопление знаний, устанавливать их значимость и вводить корректировку.
Литература
1. Ломов Б.Ф. Основы инженерной психологии: учебник для техн. вузов. М.: Высш. шк., 1986.
2. Маклаков А.Г. Профессиональный психологический отбор персонала. Теория и практика: учеб. для вузов. СПб: Питер, 2008.
3. Ивашкин Ю.А. Мультиагентное имитационное моделирование больших систем: учеб. пособие. М.: МГУПБ, 2008.
4. Ivashkin Y.A., Nazoikin E.A. Agent-Based Simulation Model of Educational Process in the Student Group // International Conference on Computational Intelligence, Modelling and Simulation. Brno, Czech Republic, 2009, pp. 132–137.
5. Шмидт Б. Искусство моделирования и имитации. Введение в универсальную имитационную систему Simplex3; [пер. с немец. под ред. Ю.А. Ивашкина и В.Л. Конюха]. Ghent, Belgium, 2003. 550 с.