ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Journal influence

Higher Attestation Commission (VAK) - К1 quartile
Russian Science Citation Index (RSCI)

Bookmark

Next issue

4
Publication date:
09 December 2024

The software implementation of Fourier coefficients estimation with limited computational resources

Date of submission article: 23.03.2015
UDC: 517.587:519.216
The article was published in issue no. № 3, 2015 [ pp. 113-118 ]
Abstract:Carrying out a scientific research in different areas requires huge amounts of computing power. Moreo-ver, computationally demanding tasks are assumed to have access to powerful servers and computing clusters and are expected to support handling big data sets. On the other hand, mobile devices have become increasingly powerful, that makes it possible to employ them in large-scale data processing, particularly, for volunteer computing like BOINC and Folding@home. Nevertheless, despite the advances in hardware, it is important to improve computational algorithms taking into account the following constraints which are determined by mobile devices characteristics: long response time, limited memory and battery life. The main purpose of this research is to create the algorithms to estimate Fourier coefficients according to these minimal requirements. To attain the aim, we employed connection coefficients method to work out specific relations for continuous Laguerre functions. In comparison with the corresponding recurrence re-lations, which entail an enormous computational cost, the proposed analytical relations require less computational re-sources to produce results (in particular, time and space). To support the theoretical results, we conducted a series of computational experiments using MATLAB Profiler. The findings of this research present the software implementa-tion of Fourier coefficients estimation to operate with limited computational resources and the results of the mobile application tested on a device. Based on these tests, we analysed the elapsed running time to process big data sets vary-ing the volume of data and the number of Fourier coefficients.
Аннотация:Научные исследования в различных областях науки и техники требуют значительных вычислительных затрат. Более трудоемкие задачи решаются с помощью суперкомпьютеров и вычислительных кластеров, которые позволяют обрабатывать большие массивы данных. С ростом вычислительной мощности мобильных устройств стало возможным их использование для решения указанной задачи, в частности, в качестве клиентов на платформах BOINC и Folding@home. Тем не менее, несмотря на аппаратные преимущества, для повышения эффективности обработки больших массивов данных необходимо адаптировать используемые для вычислений алгоритмы с учетом специфики мобильных устройств, которые накладывают ограничения на используемые ресурсы, такие как время отклика, раз-мер используемой памяти и потребляемая мощность. Целью данной работы является адаптация численно-аналитического метода оценки коэффициентов Фурье, реализованная с помощью нахождения коэффициентов связи между различными наборами функций в базисе Лагерра. Полученные аналитические соотношения в сравнении с рекуррентными соотношениями позволили снизить временные затраты и размеры используемой памяти на хранение промежуточных наборов значений. Для подтверждения эффективности предлагаемых алгоритмов была проведена серия вычислительных экспериментов в MATLAB Profiler. Адаптированные алгоритмы оценки коэффициентов разложения при ограниченных вычислительных ресурсах были положены в основу программной реализации на реальном мобильном устройстве, которая была протестирована при обработке больших массивов данных. На основе проведенных тестов сделан анализ затрачиваемых временных ресурсов при варьировании объема исходных данных и количества членов разложения ряда Фурье.
Authors: Prokhorov S.A. (sp.prokhorov@gmail.com) - Samara State Aerospace University, Samara, Russia, Ph.D, Kulikovskikh I.M. (kulikovskikh.i@gmail.com) - Samara State Aerospace University, Samara, Russia, Ph.D
Keywords: big data sets, connection coefficients, laguerre functions, fourier coefficients, analytical- numerical methods, mobile devices, limited computational resources
Page views: 8511
Print version
Full issue in PDF (8.21Mb)
Download the cover in PDF (1.09Мб)

Font size:       Font:

Современные достижения в области вычислительной техники дают возможность решать ресурсоемкие задачи в различных областях науки при построении моделей и обработке больших массивов данных прежде всего благодаря организации распределенных вычислений с помощью суперкомпьютеров и вычислительных кластеров. В последнее время к ним присоединились и мобильные устройства по причине нарастающей мощности и увеличения времени работы.

При решении ряда трудоемких задач портативные устройства используются не как инструмент для проведения научных вычислений, а скорее как средство взаимодействия с облаком через межплатформенное ПО [1–5]. С другой стороны, для менее затратных в смысле вычислительных ресурсов задач, в том числе при их разбиении [6], становится возможным непосредственное использование мобильного устройства [7–11]. Показателем целесообразности проведения научных вычислений на мобильных платформах является тот факт, что портативные устройства были включены в проекты для организации быстрых распределенных  вычислений BOINC [2, 12] и Folding@home [13]. Тем не менее, даже при оптимальном распределении задач [6] разработка мобильных приложений требует учета ограничений на использование вычислительных ресурсов, таких как время отклика, размер используемой памяти и потребляемая мощность [7–11, 14]. Следовательно, алгоритмы, реализуемые на устройстве, должны быть адаптированы согласно предъявляемым требованиям [11, 15, 16]. Таким образом, целью данной работы является адаптация алгоритма оценки коэффициентов Фурье в базисе, необходимых для построения аналитических моделей и проведения научных вычислений, в том числе при обработке больших массивов данных [9, 11].

Методы и алгоритмы

Введем ряд понятий, необходимых для математической постановки задачи. Обозначим Lk(t, g) ортогональную функцию Лагерра k-го порядка, для которой справедливо следующее рекуррентное соотношение: kLk(t, g)=(2k–1–t)Lk–1(t, g)– –(k–1)Lk–2(t, g) в Гильбертовом пространстве tÎR+ с параметром масштаба gÎГ, где ГÎ{gÎГ: g>0}, и с единичной весовой функцией.

Принимая во внимание  представим оценку функции  в виде конечного ряда: , где коэффициенты Фурье могут быть определены как

,                                        (1)

и  является нормой базисных функций.

Тогда представим коэффициенты Фурье (1) с помощью численно-аналитической квадратуры, позволяющей получить оценку с заранее заданной точностью [17]:

               (2)

где ai, bi являются коэффициентами линейной интерполяции в соответствии с

,                                         (3)

 – индикатор состояния.

Вычислить квадратуру (2) с заданной погрешностью [17] можно при аналитическом определении интегралов  и  которые могут быть представлены рекуррентно:

                    (4)

  (5)

Данные соотношения можно классифицировать как рекурсии второго порядка с экспоненциальным временем затрат. Как общее правило для решения рекурсий можно сохранять все значения в массив вместо выполнения рекурсивной программы, что, в свою очередь, приведет к существенному увеличению требуемой памяти. Таким образом, требуется разработать алгоритм для исключения упомянутых недостатков, а именно, снизить временные затраты и размер требуемой памяти, которые формируют описанные выше требования к разработке мобильного приложения.

Для решения поставленной задачи воспользуемся аппаратом определения коэффициентов связи между базисными функциями, описанным в работах [18–20].

Представим  как

,                     (6)

где  

                                     (7)

где

Подставляя (7) в (6), получим

               (8)

При проведении вычислительных экспериментов опустим рассмотрение (5), так как данное соотношение не предполагает рекурсивных вызовов, а для оценки коэффициентов по формуле (2) при программной реализации алгоритм нахождения  будет зависеть от соответствующего алгоритма

Вычислительные эксперименты

В рамках данного исследования была проведена серия вычислительных экспериментов с целью проверки адекватности представленных алгоритмов и их соответствия требованиям, предъявляемым к разработке ПО для мобильного устройства.

В таблице представлены результаты, полученные с помощью MATLAB Profiler при значениях k = {5, 10, 15, 20}, g = 1, N = 10 000, Dt = 0,001. Заметим, что N и Dt требуются для формирования матрицы значений при заданном аргументе tзад=10. Параметры, анализируемые при проведении экспериментов, – количество вызовов функции, затраты времени (CPU), размер выделяемой памяти. Эксперименты проводились на ЭВМ с характеристиками: 4GB DDR3, Intel Core i3 CPU 2.53 GHz, ОС Windows 7 (x64).

Для компактного формирования таблицы введем следующие обозначения: Lrec – функция, реализующая алгоритм вычисления Lk(t, g) рекуррентно; intLrec – функция, реализующая алгоритм вычисления  рекуррентно; Lcon, intLcon – соответствующие функции для вычисления указанных характеристик с помощью коэффициентов связи и с сохранением значений.

Как видно из таблицы, алгоритмы с реализацией связанных коэффициентов позволяют существенно снизить затрачиваемые временные ресурсы за счет исключения рекурсии, однако повышают затраты памяти, но незначительно.


При использовании интерполяционных формул (3) более высокого порядка необходимо создать алгоритм для вычисления коэффициентов связи для общего случая  , nÎN, что является дальнейшим направлением данных исследований.

Таким образом, при создании и тестировании программной реализации на базе разработанных алгоритмов проводился анализ временных затрат как более критичного показателя на реальном мобильном устройстве при изменении параметров m и N.

Программная реализация

Созданные и проанализированные алгоритмы для вычисления функций Lrec, intLrec, Lcon, int­Lcon были представлены как фрагменты кода на языке Java для реализации на мобильном устройстве Nexus 7 с характеристиками: Nvidia Tegra 3, 1GB DDR, четырехъядерный CPU 1200 MHz, ОС Android v. 4.4.1.

# рекуррентные соотношения

public static double recurrentFunctionLaggera (double point, double gamma, int k) {

        if (k == 0) {

            return Math.exp(-gamma * point / 2);

        }

        if (k == 1) {

            return Math.exp(-gamma * point / 2) * (1 - gamma * point);

        }  

        return (2 * k - 1 - gamma * point) * recurrentFunctionLaggera (point, gamma, k - 1) / k - (k - 1) * recurrentFunctionLaggera (point, gamma, k - 2) / k;

}

public static double recurrentIntegral1 (double point, double gamma, int k) {

        if (m == 0) {

            return -2 * Math.exp(-gamma * point / 2) / gamma;

        }

        double tmp = 0;

        tmp += -2 * recurrentFunctionLaggeraPoint(point, gamma, k) / gamma;

        for (int i = m - 1; i >= 0; i--) {

            tmp += -2 * recurrentIntegral1(point, gamma, i);

        }

        return tmp

}

# соотношения с коэффициентами связи

public static double basicIntegral1(double point, double gamma, int k) {

        double[] functionLaggera = basicFunctionLaggera(point, gamma, k);

        double result = 0;

        for (int v = 0; v < functionLaggera.length; v++) {

            result += Math.pow(-1, k + v) * functionLaggera[v];

        }

        result *= -4 / gamma;

        result -= -2 * functionLaggera[functionLaggera.length - 1] / gamma;

        return result;

}

public static double[] basicFunctionLaggera(double point, double gamma, int k) {

        double[] result = new double[k + 1];

        result[0] = Math.exp(-gamma * point / 2);

        if (k == 0) {

            return result;

        }

        result[1] = Math.exp(-gamma * point / 2) * (1 - gamma * point);

        for (int i = 2; i < result.length; i++) {

            result[i] = (2 * i - 1 - gamma * point) * result[i - 1] / i - (i - 1) * result[i - 2] / i;

        }

        return result;

}

Разработанная программная реализация в рамках пространственной схемы взаимодействия объектов [21] выполняет следующие задачи [22]:

–      загрузка исходного набора данных;

–      расчет коэффициентов Фурье (2) согласно каждому из анализируемых алгоритмов (4) и (7);

–      сохранение результатов работы программы в файл;

–      построение графических зависимостей с анализом временных затрат.

Следует заметить, что анализ погрешности находится за рамками проводимых в данной работе исследований, направленных, в первую очередь, на улучшение вычислительных возможностей алгоритмов без потери точности. Таким образом, при проведении тестовых испытаний програм- мной реализации будем варьировать объем исходных данных и количество членов разложения ряда Фурье при одинаковых условиях, имея в виду некоторую заданную этими параметрами погрешность.

Для удобства восприятия полученных результатов на рисунках 1 и 2 представлены фрагменты зависимостей, полученных на основе результатов тестирования программы при обработке больших наборов данных. Следует отметить, что на каждом из рисунков график, расположенный ниже (б), является представлением зависимости временных затрат для соотношений с коэффициентами связи, которая слабо различима на графике, расположенном выше (а).

Анализ приведенных зависимостей показывает, что использование квадратуры, включающей соотношения с коэффициентами связи, при оценке коэффициентов разложения позволяет значительно снизить временные затраты на вычисление коэффициентов разложения, и при увеличении объема данных и числа членов ряда Фурье получаемое преимущество возрастает.

Таким образом, в результате проведенных исследований были созданы эффективные алгоритмы для оценки коэффициентов разложения Фурье в базисе Лагерра, основанные на определении коэффициентов связи между базисными функциями для представления неопределенных интегралов, которые в последующем использовались при вычислении квадратуры. Как показали результаты вычислительных экспериментов, созданный алгоритм intLcon позволяет снизить временные затраты за счет исключения рекурсии при k = 10, N = 10 000 в 29 раз, при k = 20, N = 10 000 в 1895 раз, и в дальнейшем при увеличении порядка данное преимущество возрастает по сравнению с использованием intLrec. Для проведения исследований в условиях ограниченных ресурсов была создана программная реализация на мобильной платформе и проведены тестовые испытания, которые выявили преимущества intLcon по временным затратам при m = 10, N = 500 в 46 раз. Таким образом, с учетом требований, предъявляемых к разработке мобильных приложений, алгоритм, реализованный через расчет коэффициентов связи, и его программная реализация целесо- образны для анализа данных через оценку коэффициентов Фурье при ограниченных вычис- лительных ресурсах.

Литература

1.   Fernando N., Loke S.W., Rahayu W. Mobile cloud computing: A survey. Future Generation Computer Systems, 2013, no. 1 (29), pp. 84–106.

2.   Smaoui M., Garbey M. Improving volunteer computing scheduling for evolutionary algorithms. Future Generation Computer Systems, 2013, no. 1 (29), pp. 1–14.

3.   Shiraz M., Sookhak M., Gani A., Shah S.A.A. A study on the critical analysis of computational offloading frameworks for mobile cloud computing. J. of Network and computer applications, 2015, vol. 47, pp. 47–60.

4.   Liu J., Ahmed E., Shiraz M., Gani A., Buyya R., Qureshi A. Application partitioning algorithms in mobile cloud computing: Taxonomy, review and future directions. J. of Network and computer applications, 2015, vol. 48, pp. 99–117.

5.   Калабин А.Л., Артемов И.Ю. Программный комплекс автоматизации процедуры сбора данных // Программные продукты и системы. 2013. № 2. С. 137–141.

6.   Киселев Е.А., Аладышев О.С. Алгоритм эффективного размещения программ на ресурсах многопроцессорных вычислительных систем // Программные продукты и системы. 2012. № 4. С. 18–25.

7.   Nirjon S., Dickerson R., Stankovic J., Shen G., Jiang X. sMFCC: Exploiting Sparseness in Speech for Fast Acoustic Feature Extraction on Mobile Devices – a Feasibility Study. Proc. 14th Workshop on Mobile Computing Systems and Applications, NY, ACM, 2013, no. 15; doi: 10.1145/2444776.2444787.

8.   Rifa-Pous H., Herrera-Joancomarti J. Computational and Energy Costs of Cryptographic Algorithms on Handheld Devices. Future Internet, 2011, no. 3, pp. 31–48.

9.   Kargupta H., Park B.-H. A Fourier spectrum-based approach to represent decision trees for mining data streams in mobile environments. Knowledge and Data Engineering, IEEE Transactions on, 2004, no. 2 (16), pp. 216–229.

10. Haddad A.W., Huange S., Boutin M., Delp E.J. Detection of symmetric shapes on a mobile devices with applications to automatic sign interpretation. Proc. of SPIE, 2012, vol. 8304; doi: 10.1117/12.908815.

11. Kulikovskikh I.M., Prokhorov S.A. Some lightweight algorithms for scientific computing in mobile technologies. Proc. 8th International Conference on Applied Mathematics and Scientific Computing, Sibenik, Croatia, 2013, pp. 40–41.

12. BOINC on Android (2012). URL: http://boinc.berkeley. edu/trac/wiki/AndroidBoinc (дата обращения: 18.02.2015).

13. New mobile app from Stanford and Sony lets your phone conduct research on breast cancer and Alzheimer's while it charges (2015). URL: http://news.stanford.edu/news/2015/january/sony-app-pande-011215.html (дата обращения: 18.02.2015).

14. Окунев Б.В. Энергосберегающий алгоритм работы мобильных устройств с беспроводными самоорганизующимися wi-fi-сетями (ad-hoc) // Программные продукты и системы. 2013. № 2. С. 198–201.

15. Захаров В., Мостяев А. Особенности переноса приложений на мобильные платформы // Программные системы и инструменты. 2014. № 15. C. 16–24.

16. Vasin Yu.G., Zherzdev S.V., Egorov A.A. Mobile Geoinformation system // Pattern Recognition and Image Analysis. 2009, no. 2 (19), pp. 342–348.

17. Прохоров С.А., Куликовских И.М. Численно-аналити­ческий подход к вычислению интегралов при построении ортогональных моделей // Вестн. Сам. гос. техн. ун-та: Сер. Физ.-мат. науки. 2009. № 2 (19). С. 140–146.

18. Askey R. Orthogonal expansions with positive coefficients, Proc. Amer. Math. Soc., 1965, no. 16, pp. 1191–1194.

19. Ahmed H.M. Recurrence relations approach for expansion and connection coefficients in series of classical discrete orthogonal polynomials. Integral Transforms and Special Functions, 2009, no. 1 (20), pp. 23–34.

20. Doha E.H., Ahmed H.M. Efficient algorithms for con­struction of recurrence relations for the expansion and connection coefficients in series of quantum classical orthogonal polynomials. J. of Advanced Research, 2010, no. 1 (3), pp. 193–207.

21. Прохоров С.А., Куликовских И.М. Создание комплекса программ на основе пространственной схемы взаимодействия объектов // Программные продукты и системы. 2012. № 3. С. 5–8.

22.    Куликовских И.М., Прохоров С.А., Целищев Д.В. Мобильное приложение для анализа коэффициентов разложения в условиях ограниченных вычислительных ресурсов. Свид. о гос. регистр. прогр. для ЭВМ от 08.09.14 г. Рег. № 2014619047.


Permanent link:
http://swsys.ru/index.php?id=4037&lang=en&page=article
Print version
Full issue in PDF (8.21Mb)
Download the cover in PDF (1.09Мб)
The article was published in issue no. № 3, 2015 [ pp. 113-118 ]

Perhaps, you might be interested in the following articles of similar topics: