Journal influence
Bookmark
Next issue
Abstract:
Аннотация:
Authors: V.B. Tarasov (vbulbov@yahoo.com) - Bauman Moscow State Technical University (Associate Professor), Moscow, Russia, Ph.D | |
Ключевое слово: |
|
Page views: 12921 |
Print version Full issue in PDF (1.36Mb) |
В книге [1], посвященной выдающимся мыслителям России XX века, дана краткая биография Дмитрия Александровича Поспелова. Среди важнейших направлений его научной деятельности отмечен большой вклад в разработку теории оппозиционных шкал, являющихся образующими для моделей мира в богатых предметных областях знаний. Развитие этой теории позволит значительно приблизить к человеческим суждениям когнитивные процессы в системах искусственного интеллекта (ИИ). Основные идеи и результаты Д.А. Поспелова в области представления знаний и семантики на шкалах были опубликованы в 90-е годы и разбросаны по различным, порой малодоступным, изданиям. По ряду причин (к сожалению, главной из них стала тяжелая болезнь) ему так и не удалось собрать их в монографии. В данной статье делается попытка систематического изложения основ поспеловской теории оппозиционных шкал. При этом автор опирался на свои записи лекций Д.А. Поспелова, прочитанных в МЭИ в 1992-1994 г., а также на публикации [3-6]. Главное положение традиционной теории оппозиционных (полярных) шкал [2], понимаемых как образующие модели мира, заключается в том, что мир для человека устроен в виде системы шкал, где края шкалы связаны между собой чем-то вроде операции отрицания. Например: шкалы: «добро–зло», «красота–уродство», «друг–враг», «умный–глупый» и пр. Всякое явление, всякий объект, всякий субъект, все их деяния – словом, все отображается на подобные шкалы, где середина нейтральна, а далее могут быть градации. Важно, что всегда есть два конца и середина, которая очень важна: она делит всю шкалу на две половины – положительную и отрицательную. Именно середина как бы переключает нас с одного типа оценок на другой. Как искались подобные шкалы? Рассматривались слова–антагонисты. Просто брали словарь и начинали искать пары типа «низкий–высокий», «острый–тупой», «хороший–плохой». Этих пар в каждом языке набирается примерно четыреста. В разных языках по-разному, но колеблется где-то около четырехсот. Итак, существует примерно 400-мерное пространство шкал, на котором мы все как бы запечатлели. Далее стали это число уменьшать, искать базисные шкалы. В конце концов, психологи, которые всем этим занимались, выделили 7 базисных шкал. Это так называемые шкалы Ч. Осгуда [2]. Потом их свели до трех, чтобы было удобно рисовать картинку. Эти три основные шкалы и есть шкалы оценки, силы и активности. Человек умеет (априори) выполнять две базовые операции на шкалах: соотносить некоторую сущность с определенным классом сущностей и сравнивать сущность с парой сущностей-антонимов, то есть определять место интересующей его сущности на шкале, образованной антонимами. Согласно гипотезе Д.А. Поспелова, семантика операций над экспертными оценками сильно зависит от контекста. Для подтверждения этого им было исследовано, как изменяется толкование опера- ции отрицания на оппозиционной шкале [3-4]. В качестве типовых, часто употребляемых при- меров были выбраны шкалы Мы–Они [3] и Друг–Враг [4]. Еще в 1989 г. в первой главе своей книги [3] «У истоков формальных рассуждений» Д.А. Поспелов развивает очень важную идею зависимости рассуждений от онтологических допущений о мире. В частности, он обосновывает тезис о множественности операторов отрицания на полярных шкалах, их зависимости от факторов эволюции и коммуникации на примере человеческой истории [3]. Для этого им было условно выделено три этапа исторического развития человечества. На первом этапе, когда только произошло образование первобытных племен, индивидуальное мышление всецело слилось с коллективным. Здесь слово МЫ характеризует представителей той общности, к которой принадлежит индивид. Все, кто входит в число МЫ, живут по одним и тем же законам, в рамках одних и тех же норм или табу. А если кто-то пользуется другими законами, то он оказывается в оппозиции к тому, кто правильно живет. Он не может принадлежать к МЫ и, следовательно, он не МЫ, а ОНИ. Этой ситуации соответствует пара четко разделенных пространств МЫ и НЕ МЫ, свойства которых различны. Это позволяет считать, что ОНИ находятся вне наших законов, вне нашего опыта, и им можно приписывать все, что угодно. Так в эпосе появляются живущие где-то далеко люди с собачьими головами – фаги, пожирающие все вокруг, и т.п. Возникает форма рассуждения, основанная на этой оппозиции «Кто не с нами, тот против нас», которая оправдывается соображениями типа «Они не такие, как МЫ, и, следовательно, ИХ надо уничтожать». Культурная (и подчас географическая) удаленность ИХ от НАС выражается на полярной шкале МЫ-ОНИ за счет большого расстояния между полюсами. В результате на этом этапе преобладают отношения полного антагонизма и конфронтации. Значительно позже, на втором этапе, по мере развития средств коммуникации и появления регулярных контактов между племенами и народами, наступает их сближение. Тогда расстояние между полюсами на оппозиционной шкале постепенно сокращается, то есть жесткая оппозиция, противостояние МЫ-ОНИ, переходит в более мягкое и, возможно, регулируемое противоречие. Наконец, при дальнейшем взаимодействии и взаимопроникновении ранее жестко отделенных друг от друга полюсов бинарные шкалы начинают расщепляться, превращаясь сначала в тернарные шкалы, а затем и в шкалы с большим числом градаций. Такое превращение приводит к переходу от неподвижного и неизменного мира мифологических представлений к динамическому, постоянно изменяющемуся реальному миру. Кто же такие ВЫ? Понятие ВЫ возникает в зоне контакта между МЫ и ОНИ, причем ВЫ служат посредниками между двумя различными общностями: НАМИ и ИМИ. Итак, ВЫ характеризуют динамику, переход ИХ в НАС и обратный переход от НАС к НИМ. Помимо этого, различные трактовки операции отрицания НЕ могут быть обусловлены психологическими типами людей, особенностями их восприятия друг друга. В дискуссии [4] на примере различных вариантов интерпретации шкалы «друг–враг» Д.А. Поспелов показывает, что у разных людей шкалы опираются на очень разное их понимание и использование. Им выделены 4 основных случая: 1) жесткая поляризация, полное противопоставление друзей и врагов, формирование разбиения, которое соответствует классической двузначной логике и принципу исключенного третьего: «Кто не друг, тот враг»; 2) абсолютизация друзей и игнорирование врагов, которые могут быть описаны с привлечением интуиционистской логики; 3) амбивалентность, переплетение друзей и врагов, которая выражается, например, в виде противоречивого высказывания «И друг, и враг мой» и сводится к представлениям нечеткой логики; 4) непонимание, неспособность оценить людей на этой шкале и стремление перейти к какой-то другой системе оценок («И не друг, и не враг, а так…»). В первом случае субъект делит всех окружающих на друзей и врагов, четко зная, кто друг и кто враг, и о каждом новом человеке пытается выяснить, кто он, друг или враг, куда его отнести, туда или сюда. Это вполне определенный психологический тип людей, который также выделяется по другим стандартным психологическим качествам. Люди, для которых мир делится на друзей и врагов, а промежуточные градации как бы сливаются, концентрируются. Все качества, которыми наделяются друзья, отрицаются у тех, кто называется врагом. Представления и оценки у людей этого типа устойчивы: они не верят, что друг может стать врагом, а враг другом. Люди второго типа негативную часть шкалы интерпретируют в виде одного кусочка. Есть близкие и не столь близкие друзья, то есть положительная часть шкалы имеет протяженность и градации, а вот в противоположной части – одна точка. Все остальные, кто не друзья, просто какие-то другие люди... Чужие. Этим чужим не приписываются, как в первом случае, отрицательные качества: у меня о них нет информации – следовательно, они для меня неразличимы. Еще один интересный психологический тип – амбивалентные люди. У них друзья и враги перепутаны, они не умеют отличать друзей от врагов и всегда сомневаются. Каждый раз их отношение к другим ситуативно, причем вчерашний друг может по их представлениям сегодня стать врагом и наоборот. В последнем случае имеем дело с людьми, для которых шкала друг-враг не является определяющей (или которые вообще не понимают, что такое друзья и враги). В результате проведенного анализа Д.А. Поспелов обосновал утверждение, что шкалы, образующие модели мира, далеко не всегда являются классическими оппозиционными шкалами. В работе [5] им введены неклассические круговые (или кольцевые) шкалы, проведен анализ основных НЕ-факторов на шкалах и предложены двухосновные оценки объектов на таких шкалах, отражающие динамику экспертных знаний (суждений). Первоначально в [5] Д.А. Поспеловым была предложена новая классификация шкал. Среди всех оппозиционных (полярных) шкал были выделены «серые» и «черно-белые» шкалы», а также исследованы их основные характеристики. При оценивании на «серых» шкалах переход некоторого объекта (к примеру «дом») от свойства A+ (например «большой») к противоположному свойству A- («малый») происходит плавно, постепенно. Подобные шкалы удовлетворяют условиям: а) взаимной компенсации между свойствами A+ и A-, то есть чем в большей степени проявляется A+, тем в меньшей степени проявляется A- (это условие можно записать в виде A+® A-¯) и наоборот; б) наличия нейтральной точки А0, интерпретируемой как точка наибольшего противоречия, в которой оба свойства присутствуют в равной степени A+ = A- (то есть в данном примере имеется в виду дом, при оценке размеров которого в равной степени можно считать его как большим, так и малым). Обычно для «серых» шкал полагается, что свойства A+ и A- связаны между собой логическим отрицанием, то есть A- =ùA+. Для метрических полярных шкал, когда можно определить расстояния между любыми двумя точками шкалы, первое условие выражает идею дополнительности (сумма расстояний от любой точки шкалы до ее концов равна общей длине шкалы). Второе условие свидетельствует о наличии срединной точки, где расстояния до левого и правого концов шкалы равны между собой. Напротив, в случае «черно-белых» шкал компенсации противоположных свойств не происходит: при уменьшении степени проявления A+ степень проявления A- не возрастает. Здесь принцип дополнительности не работает: по мере удаления от краев шкалы оценки обоих свойств как A+, так и A- становятся все более неопределенными. Более того, срединная точка подобной шкалы есть точка разрыва, в которой не наблюдается ни того, ни другого свойства ù (A+ ÚА-), то есть имеется максимальная неопределенность. С позиций синергетики окрестность этой точки можно интерпретировать как область хаоса, в которой возможно спонтанное возникновение нового смысла в результате «перескока» с одной шкалы на другие. Два типа интерпретации срединной точки у Д.А. Поспелова соответствуют рассмотрению двух различных видов НЕ-факторов (этот термин объединяет такие характеристики суждений и рассуждений, как неточность, неполнота, нечеткость, немонотонность, и т.д). В случае «серой» шкалы крайние позиции характеризуются полным противопоставлением, а промежуточные позиции, выражающие некоторые смешанные доли представительства крайних оценок, определяют противоречивые оценки. Тогда естественным образом формируются двухосновные оценки на шкалах [5]. Если для удобства считать, что левому концу шкалы приписана оценка (1; 0), а правому – (0; 1), то средняя точка такой шкалы имеет оценку (0,5; 0,5). Любая другая точка определяется в виде (x; y), где 0 Для «черно-белых» шкал приближение к середине означает конец определенности, переход от полной известности к полной неизвестности, когда возникает область бифуркации, связанная с привлечением новых шкал. «Серые» шкалы предполагают, что когда человек располагает нечто на шкале, он неявно учитывает расстояния до обоих концов шкалы. Напротив, на «черно-белых» шкалах позиция некоторой точки определяется только по отношению к одному краю шкалы. Геометрически наличие оценок типов можно представить с помощью «кольцевых» шкал. По горизонтальному диаметру кольцевой шкалы расположены две антонимичные сущности. Их антонимичность связана с нижней частью кольца, отождествляемой с «серой» шкалой. Напротив, верхняя часть кольца распадается на две половинки. Оценки близости некоторой сущности к A+ или А- представляют собой пару позиций на разных половинках шкалы, причем операция отрицания здесь не работает. В результате Д.А. Поспеловым было сформулировано важное представление об обобщенной шкале. В отличие от обычных шкал, где каждой точке соотносится один-единственный объект, на обобщенных шкалах любой точке может с разными степенями соответствовать множество объектов. В [6] Д.А. Поспеловым была высказана гипотеза о том, что «базовые категории в структуре модели мира проецируются на систему обобщенных шкал, задающих отношения нестрогого или частичного порядка, следования, толерантности и доминирования». Итак, с одной стороны, Д.А. Поспелов одним из первых в ИИ стал отстаивать идею взаимосвязи между логикой и онтологией, близко подойдя к представлениям А.А. Зиновьева о комплексной логике [7] и В.А. Смирнова о многомерных логиках [8]. Если же воспользоваться терминологией А.С. Есенина-Вольпина [9], то многомерность вышеописанных ситуаций экспертизы определяется применением двух различных классов а) логические правила деспотического типа (жесткие оппозиционные оценки и рассуждения типа «В мире есть только МЫ, а НЕ МЫ = ОНИ», характерные для классической аристотелевой логики); б) логические правила либерального типа: мягкие оценки, основанные на идее «В мире изначально есть (сосуществуют) и МЫ, и ОНИ, и задача состоит в нахождении условий сосуществования, области согласия (гармонии) между НАМИ и ИМИ». С другой стороны, предложенную Д.А. Поспеловым круговую шкалу легко соотнести с четырехзначной логикой аргументации В.К. Финна [10]. Пусть n – число экспертов, оценивающих пару свойств A+ и A- некоторого объекта по двузначной логике ("да–нет") на оппозиционной шкале: n = n+Èn-, причем n+Çn-. Здесь n+– число экспертов, проголосовавших за положительное свойство A+; n- – число экспертов, проголосовавших за отрицательное свойство A-. Тогда базовые ситуации коллективной оценки можно представить следующими значениями истинности v: v = +1 тогда и только тогда, когда n+ ¹ Æ и n- = Æ v = –1 тогда и только тогда, когда n- ¹ Æ и n+ = Æ v = 0 тогда и только тогда, когда n+ = n- ¹ Æ v = ? тогда и только тогда, когда n+= n- = Æ Шкалы в картине мира не являются изолированными друг от друга. Между ними существуют определенные связи и могут выполняться специальные операции. В [6] даны примеры: прямой (сохраняющей порядок) и обратной проекции (изменяющей порядок на противоположный), конъюнктивной и дизъюнктивной проекции. Затем в [11] Д.А. Поспелов выделил основные системы операций для логики перцептивных образов: уравновешивание, концентрация, орнаментализация и др. Даже этот краткий обзор новых идей и резуль- татов Д.А. Поспелова в области оппозицион- ных шкал и их использования в моделях мира позволяет сделать следующий вывод. Помимо таких открытых Д.А. Поспеловым и широко из- вестных сегодня областей информатики и ИИ, как прикладная семиотика [12] (семиотическое моделирование), ситуационное управление, псевдо- физические логики, формализованное описание поведения, необходимо осмыслить и развивать его пионерские исследования в области теории шкал, которые смело можно положить в основу еще одной новой научной области – прикладной семантики. Список литературы 1. Алексеев П.В. Философы России XIX-XX-го сто- летий. Биографии. Идеи. Труды. – М.: Академический проект, 2002. 2. Osgood Ch., Susi C.J., Tannenbaum P.H. The Measurement of Meaning.–Urbana, 1957. 3. Поспелов Д.А. Моделирование рассуждений. Опыт анализа мыслительных актов. – М.: Радио и связь, 1989. 4. Особенности нечетких моделей в понимании текстов на естественном языке. Круглый стол// Новости искусственного интеллекта. – 2001. – №2-3. – С.37-43. 5. Поспелов Д.А. «Серые» и/или «черно-белые»// Прикладная эргономика. Спецвыпуск: Рефлексивные процессы. – 1994. – №1. – С.29-33. 6. Поспелов Д.А. Знания и шкалы в модели мира// Модели мира. – М.: РАИИ, 1997. – С.69-84. 7. Зиновьев А.А. Очерки комплексной логики. – М.: Эдиториал УРСС, 2000. 8. Логико-философские труды В.А.Смирнова. – М.: Эдиториал УРСС, 2001. 9. Есенин-Вольпин А.С. Избранное. – М.: РГГУ, 1999. 10. Финн В.К. Об одном варианте логики аргументации// Научно-техническая информация. Сер. 2. Информационные процессы и системы.–1996.–№5-6.–С.3-19. 11. Поспелов Д.А. Метафора, образ и символ в познании мира // Новости искусственного интеллекта. – 1998. – №.1. – С.94-114. 12. Поспелов Д.А. Прикладная семиотика и искусственный интеллект// Программные продукты и системы. – 1996. – №3. – C.10-13. |
Permanent link: http://swsys.ru/index.php?id=647&lang=en&page=article |
Print version Full issue in PDF (1.36Mb) |
The article was published in issue no. № 2, 2003 |
Perhaps, you might be interested in the following articles of similar topics:
- Компьютер - хранитель домашнего очага
- Зарубежные базы данных по программным средствам вычислительной техники
- О выборе числа процессоров в многопроцессорной вычислительной системе
- Интегрированная система «микросреда»
- Разработка загрузчика программного обеспечения встроенной системы управления
Back to the list of articles