Journal influence
Bookmark
Next issue
Abstract:
Аннотация:
Authors: () - , V.N. Zuev (zvn_tver@mail.ru) - R&D Institute Centerprogramsystem, Tver State Technical University, chair of Information’s Systems (Head of Laboratory), Tver, Russia, , () - | |
Keywords: time series, , neural network |
|
Page views: 19740 |
Print version Full issue in PDF (3.60Mb) |
Плата за электроэнергию, потребленную промышленным предприятием, существенно зависит от отклонения фактических значений электропотребления от договорных (заявленных), поскольку, согласно правилам определения стоимости электрической энергии, предусмотрены штрафные санкции, обусловленные величиной этих отклонений. Таким образом, для принятия решений при планировании заявки на электроэнергию необходимо спрогнозировать режимы электропотребления. Информация по корректировке планового почасового потребления электроэнергии при наличии действующей автоматизированной системы коммерческого учета электроэнергии предоставляется не позднее, чем за 3 рабочих дня (до 17.00) до даты, с которой предполагается изменение. Таким образом, возникает задача суточного прогнозирования электропотребления на трое суток вперед с максимально возможной точностью. В данной работе рассматривается программная система прогнозирования объема электроэнергии, потребляемой стеклозаводом, с использованием нейросетевого прогнозатора. При прогнозировании наиболее часто применяются два подхода. При одном используются временные ряды электропотребления соответствующих подразделений за предыдущий период для выявления трендов и циклических составляющих. При другом подходе определяется регрессионная модель, связывающая величину электропотребления с внешними факторами. Было выяснено, что для данного объекта электропотребления такими факторами являются среднесуточная температура окружающей среды и время простоя стеклоформующих машин. Используя нейронную сеть, эти два подхода можно объединить. В общем виде модель прогнозирования электропотребления записывается следующей функцией: Ai=f(Ai-1,…Ai-n,Ti), где Ai – спрогнозированное значение электропотребления; Ai-1 и Ai-n – значения электропотребления в предыдущие моменты времени; Ti – совокупность внешних факторов, оказывающих влияние на электропотребление (предполагаемые значения). Оценка качества прогнозирования осуществляется с помощью показателя абсолютной процентной погрешности: МАРЕ, где Ât – спрогнозированное значение; At – фактическое значение электропотребления; n – количество прогнозируемых значений [1]. Для прогнозирования использовались данные о суточном потреблении электроэнергии, полученной с помощью автоматизированной системы коммерческого учета электроэнергии, разработанной научно-производственным центром энергосбережения Тверского государственного технического университета. Система прогнозирования состоит из блоков, реализованных на встроенном языке программирования системы MATLAB: ввод исходных данных, предобработка данных, обучение нейронной сети, прогнозирование электропотребления, преобразование и вывод результатов прогноза. Блок ввода исходных данных выполняет чтение данных, необходимых для прогнозирования. Данные хранятся в текстовых файлах (TrainData.txt или InputData.txt) и могут быть отредактированы с помощью текстового редактора. Файл TrainData.txt содержит данные, необходимые для обучения нейронной сети. Они должны быть упорядочены хронологически и расположены по следующим столбцам: - объем электроэнергии, потребленной за одни сутки; - среднесуточная температура воздуха; - время простоя производственных линий, в часах. Файл InputData.txt содержит предполагаемые значения внешних факторов, используемых для получения прогноза. В качестве этих факторов используются спрогнозированные значения температуры воздуха и информация о плановых остановках производственных линий. Таким образом, файл содержит следующие элементы: - предполагаемые значения среднесуточных температур воздуха; - предполагаемые значения времени простоя производственных линий, в часах. Каждая строка файла соответствует одним суткам, для которых должен быть получен прогноз. Для составления прогноза на первые сутки используются фактические данные из файла TrainData.txt. Для последующих дней – спрогнозированные значения, что негативно сказывается на точности прогноза. Блок предобработки данных осуществляет их проверку на наличие пропусков и выполняет нормирование данных. Нормирование входных данных является важным фактором, влияющим на точность прогнозирования электропотребления. Очевидно, что результаты нейросетевого моделирования не должны зависеть от размерности входных величин. Кроме того, большие значения электропотребления могут привести к проблемам при обучении нейронной сети. Нормирование фактических значений электропотребления осуществляется по формуле AH=A/AMAX. По аналогичным формулам нормируются температура и время простоя. Блок обучения нейронной сети, используя полученные данные, выполняет подготовку нейросетевого прогнозатора, реализация которого осуществляется в среде MATLAB с помощью пакета расширений Neural Network Toolbox [2]. Согласно проведенным исследованиям, нейронная сеть для решения данной задачи представляет собой рекуррентную сеть Элмана [1]. Выяснилось, что использование при прогнозировании внешних факторов позволяет повысить точность прогноза. При этом, чем больше факторов учтено, тем выше точность прогноза. Согласно результатам проведенных исследований, структура сети для прогнозирования электропотребления может выглядеть следующим образом. Число нейронов во входном слое равно сумме числа входных воздействий, то есть размера окна (количества предыдущих значений электропотребления, подаваемых на вход нейронной сети, – четыре значения) и количества внешних факторов, влияющих на электропотребление. При этом используются четыре значения электропотребления. Скрытый слой содержит 10 нейронов, а в выходном слое находится один нейрон. Структура нейронной сети для прогнозирования изображена на рисунке 1. Рис. 1 Обучение сети осуществляется в пакетном режиме по методу обратного распространения ошибки. На вход нейронной сети одновременно предъявляются все входные векторы. Перед началом обучения весовые коэффициенты инициализируются случайным образом. После обучения сеть используется для прогнозирования и веса не изменяются. Блок прогнозирования электропотребления использует обученную нейронную сеть для выполнения прогноза на трое суток вперед и далее в зависимости от содержимого файла Input Data.txt. Блок преобразования результатов прогноза проводит обратное преобразование спрогнозированных значений в формат, пригодный для рассмотрения экспертом-энергетиком. Блок вывода результатов прогноза записывает спрогнозированные значения в файл OutputData.txt. Выполним проверку описанной системы прогнозирования. Для обучения сети используется временной ряд суточного электропотребления с 1 августа по 15 сентября 2007 г., для проверки точности прогноза модели – с 15 по 24 сентября 2007 г. Обучение сети проводится с учителем, основная идея которого состоит в подборе кортежей , где x – входная матрица; d – соответствующий ей ожидаемый выходной вектор сети. Каждый столбец матрицы x – это предыдущие значения электропотребления со сдвигом на единицу сверху вниз. Матрица x в случае использования трех предыдущих значений, внешних факторов для прогнозирования на одни сутки вперед имеет вид:
Вектор d, соответствующий данной матрице, выглядит следующим образом:
Используя описанные данные, можно получить результаты, отраженные в таблице:
Графики спрогнозированных, фактических и заявленных значений электропотребления изображены на рисунке 2. Рис. 2 Средняя ошибка прогноза составляет 1,1 %, максимальная – 3 %. Такая точность может существенно сократить издержки, связанные с переплатой за электроэнергию. На практике учет всех возникающих простоев при прогнозировании не представляется возможным. Однако использование информации о простоях при обучении нейронной сети позволит более точно учитывать влияние температуры, а также выявить циклические составляющие и тренд временного ряда. Использование краткосрочного прогнозирования позволяет оперативно реагировать на изменение режима работы производственных линий. Кроме того, полученная от метеорологических служб информация более достоверна, чем при долгосрочном прогнозировании. Анализ применимости нейронных сетей для прогнозирования объемов потребления электроэнергии показал, что они подходят для решения таких задач для промышленных потребителей электроэнергии. Однако разработанная методика не претендует на замену труда эксперта-энергетика предприятия, но может использоваться как дополнение. Литература 1. Оссовский С. Нейронные сети для обработки информации. – М.: Финансы и статистика, 2004. – 344 с. 2. Дьяконов В.П., Круглов В.В. MATLAB 6.5 SP1/7/7 SP1/7 SP2 + Simulink 5/6. Инструменты искусственного интеллекта и биоинформатики. – М.: САЛОН-ПРЕСС, 2006. – 456 с. |
Permanent link: http://swsys.ru/index.php?id=2058&lang=en&page=article |
Print version Full issue in PDF (3.60Mb) |
The article was published in issue no. № 1, 2009 [ pp. 147 ] |
Perhaps, you might be interested in the following articles of similar topics:
- Нейросетевая модель прогнозирования временных рядов финансовых данных
- Нейронные сети и модели ARIMA для прогнозирования котировок
- Комплекс программ и алгоритм расчета фрактальной размерности и линейного тренда временных рядов
- Трехступенчатый эволюционный метод формирования коллективов нейронных сетей для решения задач классификации
- Комплекс программного обеспечения для оптимизации надежности однородных нейронных структур
Back to the list of articles