Регуляторные системы организма – это постоянно действующий аппарат слежения за состоянием всех систем и органов, за их взаимодействием и соблюдением равновесия между организмом и средой. Степень напряжения регуляторных систем – интегральный ответ организма на весь комплекс воздействующих на него факторов. Судить о степени напряжения регуляторных систем можно с помощью многих методов, но наиболее простой и доступный, позволяющий вести непрерывный динамический контроль, – математический анализ ритма сердца. Изменения ритма сердца – универсальная оперативная реакция целостного организма на любое воздействие факторов внешней среды.
Математические модели, связанные с исследованием вариативности сердечного ритма (HRV) и описывающие изменение сердечного ритма дифференциальными уравнениями, не соответствуют импульсному характеру процесса [1, 2]. Цель данного исследования заключается в совершенствовании методики оценки психоэмоционального напряжения и умственной нагрузки, в создании программно реализуемой модели системы управления сердечным ритмом, которая базируется на разностных уравнениях и учитывает шумы синусового узла, отображает волновые процессы сосудистой и дыхательной природы с их спектральными характеристиками.
Модернизированная схема модели HRV [2] представлена на рисунке 1.
В рассматриваемой модели имеются входы:
– экспериментально определенные частотные и амплитудные характеристики дыхательных движений грудной клетки, при этом учитываются их шумы;
– экспериментально определенные частотные и амплитудные характеристики колебаний общего периферического сопротивления сосудистой системы, при этом учитываются их шумы;
– внутренняя частота синусового узла (IHR) с ее нестабильностью.
Выход модели, то есть сердечный ритм (HR), преобразуется в минутный объем крови, выбрасываемый сердцем (Q) с коэффициентом пропорциональности 1,5. Передаточная функция сосудистой системы описывает колебательное поведение кровяного давления Р. Воздействие дыхательных движений PР на кровяное давление учитывается при суммировании в компараторе 3, сосудистые воздействия AD – в компараторе 4. Частота афферентных разрядов FAF с барорецепторов преобразуется в центральной нервной системе (ЦНС) в частоту эфферентных разрядов (VC) с коэффициентом пропорциональности KVS, который выбирается из начальных условий для установившегося режима [3]. Нисходящее воздействие ЦНС на синусовый узел осуществляется через волокна вагуса, реализуя быструю регуляцию артериального давления (АД), представленную в модели посредством блоков синусового узла.
Существенным отличием от моделей [1, 2] является замена дифференциальных уравнений и передаточных функций дискретной математической моделью, более соответствующей импульсному характеру изучаемого процесса и использующей уточненные значения ряда физиологических переменных.
В модели дифференцирующее звено вагуса, дифференцирующее звено дыхательной системы, динамическое звено синусового узла, динамическое звено сосудистой системы описываются разностными уравнениями. Более подробно переход к разностным уравнениям описан в работе [4]. Уравнение дифференцирующего звена дыхательной системы и дифференцирующего звена вагуса имеет вид Y(m)=A1Y(m–1)+A2[X1(m)–X1(m–1)], где , .
Для дыхательной системы значения параметров следующие: t=0,5, K=1, для дифференцирующего звена вагуса – t=0,2, K=1.
Уравнение динамического звена сосудистой системы имеет вид
,
где A3=2e–wT, A4=e–2wT, A5=Kw2Te–wT.
Значения параметров: K=1, w=0,4.
Уравнение динамического звена синусового узла имеет вид
Z2(m)=A8Z2(m–1)–A9Z2(m–2)+A10X3(m–1),
где
Значения параметров: K=1, w=1, x=0,65.
В рассматриваемой модели наименьшая постоянная времени t=0,2 сек, поэтому интервал дискретности в разностных уравнениях надо взять T<0,2 сек. После анализа переходных процессов выбрано T=1/6 сек, при нем наблюдается устойчивое решение системы при всех условиях, и дальнейшее его уменьшение ведет только к усложнению вычислений. Модель содержит три нелинейных элемента (рис. 2).
Математическое описание нелинейных элементов дано в следующих формулах:
1)
где KD=1 – коэффициент усиления;
2)
где KF=0,5;
3)
Значения А=1,74, В=0,96 приведены в [5].
Данная модель реализована в программе «Модель системы регуляции сердечного ритма», защищенной авторским свидетельством (рег. номер 2009615045, 15.09.2009), блок-схема программы приведена на рисунке 3.
Программа выполняет следующие функции: моделирование ритма сердечных сокращений с учетом дыхательных и сосудистых волн, оценка параметров вариативности сердечного ритма, визуальное представление результатов моделирования в виде графика кардиоинтервалограммы, статистическая обработка результатов (рис. 4).
Разработанная математическая модель системы управления сердечным ритмом позволила получить полигоны значений RR-интервалов с такими же соотношениями среднего арифметического и стандартного отклонений и такой же волновой структурой ритма, как и у реального человека, чем доказывается адекватность разработанной модели исследуемому физиологическому процессу [3]. График зависимости разброса σRR от средней длительности RR-интервалов при моделировании и в эксперименте показан на рисунке 5.
Модель представляет собой перспективный метод решения широкого круга теоретических проблем физиологии сердечно-сосудистой системы: определение механизмов уменьшения разброса частоты пульса при умственной нагрузке, сравнительная оценка информативности предлагаемых показателей аритмий, уточнение ряда физиологических констант и характеристик системы управления сердечным ритмом и т.д., что имеет большое практическое значение для эргономики физиологии труда и клинической медицины.
Литература
1. Luckzak H., Philipp U., Rohmetr W. Decomposition of heart rate variability under the ergonomics aspects stressor analysis // The study of heart rate variability. Oxford, 1980.
2. Miyawaki K., Takahashi T., Takamura H. Analysis and simulation of the periodic heart rate fluctuation // Received Nov. 25. 1965. № 709, рр. 315.
3. Романова Г.В. Математическое моделирование управления сердечным ритмом: автореф. дис. ... канд. техн. наук. Тверь: ВУ ПВО, 1999. 18 с.
4. Романова Г.В., Чертенкова О.С. Математическая модель компонентов, обуславливающих вариативность сердечного ритма // Современные технологии. Системный анализ. Моделирование. 2009. № 3(23). С. 225–228.
5. Luczak H. Fractioned heart rate variability. Part I: Analysis in a model of the cardiovascular and cardiorespiratory system // Ergonomics. 1978. Vol. 21. № 11, pp. 895–911.