Предлагаемая информационная система анкетирования (ИСА) «Апофаси» представляет собой ПО для получения прогнозной оценки реакций социально-экономической системы (СЭС) (Свид. о регистр. электронного ресурса № 17686 от 14.12.2011 г., авторы: Меликов А.В., Макарычев П.П.) на возможные управляющие воздействия с использованием web-технологий в режиме удаленного доступа [1].
Сложность управления СЭС обусловлена сильным влиянием случайных факторов на объект управления (ОУ), малой изученностью реакций ОУ на конкретные управляющие воздействия, наличием значительного синергетического эффекта, а также трудностями в организации мониторинга поведения таких систем. Кроме того, в СЭС присутствует антропогенный фактор, имеющий по своей природе нестатистический характер. Все это не позволяет в должной мере изучать процессы, происходящие в СЭС, методами математической статистики, затрудняет оценку репрезентативности выборки и исследование поведения системы при изменении параметров прогнозируемого объекта, что в совокупности приводит к значительным погрешностям получаемых прогнозных оценок в задачах управления СЭС. Поэтому при управлении СЭС используют методы экспертного оценивания (ЭО), следовательно, от того, какими способами были проведены сбор и обработка экспертной информации (ЭИ), будет зависеть достоверность полученной прогнозной оценки реакций СЭС на возможное управляющее воздействие.
На основании анализа существующих программных продуктов сбора и обработки данных («Analysis Services» и «Excel» компании Microsoft, «Data Mining» компании Oracle, «Deductor» компании BaseGroup и web-сервисов, таких как «ProstOpros» и «WebAnketa») были выявлены недостатки в обработке и анализе ЭИ, следствием которых является низкая информативность данных, так как не учтена степень уверенности эксперта в каждом из вариантов ответа; недостаточно полно и точно взвешены мнения экспертов, имеющие несколько различающихся по степени уверенности прогнозных оценок реакции СЭС на возможные управляющие воздействия [2].
Следующий шаг для достижения намеченной цели заключался в разработке процессного подхода к процедуре анкетирования (рис. 1), отличающегося от существующих наличием процессов дополнительной обработки результатов ЭО при проведении их многомерного анализа с целью принятия управленческих решений. ЭИ, собранная системой анкетирования, преобразуется в агрегированные данные многомерного хранилища, при анализе которых проверяется уровень значимости атрибутов экспертов, влияющих на компетентность в предметной области, и учитывается степень уверенности эксперта в каждом из вариантов ответа, что позволяет повысить информативность выводов, получаемых в результате обработки данных экспертных опросов.
В связи с предложенным процессным подходом к процедуре анкетирования возникла необходимость разработки математической модели преобразования данных экспертных опросов из исходной БД в агрегированные данные хранилища, позволяющей обработать данные в иерархиях, изначально не предусмотренных при сборе ЭИ [3], что, в свою очередь, повысит достоверность прогнозной оценки реакций системы и, как следствие, улучшит управление СЭС в целом.
В работе для реляционных БД, используемых как исходные данные для гиперкубов, определены функциональные и многозначные зависимости. Данные зависимости используются при создании иерархий многомерной модели (ММ). Поскольку схема иерархий – это ориентированный ациклический и слабо связанный граф, для функциональной зависимости, где атрибуты из множества D располагаются в иерархии выше атрибутов из множества C, так как различные значения C определяют одинаковое значение D, добавляется дуга , а для многозначной зависимости, где атрибуты из C располагаются в иерархии выше атрибутов из D È E, так как при существовании двух кортежей, совпадающих по C, существуют еще два кортежа с тем же значением C, добавляется дуга . Таким образом, в граф H добавляют- ся вершины для атрибутов из множества L, отсутствующих в схеме иерархий в качестве вершин (рис. 2) [4].
Одним из условий эффективной организации данных является снижение занимаемого объема памяти на дисковом пространстве ЭВМ. Вес гиперкуба G – его размерность, помноженная на количество конкретных для него показателей: VG = k1 ´ k2 ´ …´ kn ´ m, где m – количество определенных для гиперкуба показателей g; ki – количество значений по измерению fi (i = 1, 2, …, n).
При снижении количества пустых (нулевых) значений показателей, то есть при увеличении плотности гиперкуба, модель организации данных становится улучшенной. Пусть один из показателей в срезе гиперкуба равен 0. Тогда имеет место следующее разложение исходного гиперкуба, которое записывается в виде суммы нескольких гиперкубов меньших размерностей:
В результате получается, что суммарный вес разложения меньше веса исходного гиперкуба. Для достижения максимального улучшения модели данная процедура проводится итерационно по другим измерениям гиперкубов до исчезновения срезов, вырожденных по показателю [5].
При построении моделей запросов формируются схемы отношений, описывающие одну таблицу хранилища данных (ХД). Посредством объединения атрибутов однотипных схем отношений задается произвольная совокупность многоместных отношений, выраженных в специфической структуре, называемой C-системой (S[XYZ]), которая описывает структуру ХД. В применении к описанию структуры ХД построенной модели C-система имеет вид , где F, K, P, R, T – измерения. В результате транзитивного замыкания (рис. 3) получается:
.
Так, для формируемых C-систем выполняются аксиомы матроидов, что позволяет представить схему ХД в виде классификации подмножеств исходного множества, представляющей собой обобщение идеи независимости элементов. Такое представление структуры ХД позволяет решить задачу уменьшения диаметра графа с использованием «жадного» алгоритма [6]. Максимальная длина дуги графа – вычисленная из выражения r(vi)=maxjd(vi, vj), где d – элементы графа D(G) с расстояниями vi, vj (i, j = 1, 2, …, n, n – количество вершин графа) – не превышает его диаметра (рис. 4).
Такое представление многомерной модели данных, во-первых, обеспечивает их надежное и компактное хранение в сложных информационных структурах и возможность выделения значимой информации в процессе обработки данных, что в совокупности повышает эффективность обработки ЭИ и, как результат, достоверность прогнозной оценки реакций СЭС, во-вторых, способствует проектированию на ее основе адаптивной, интегрируемой и динамичной ИСА.
После обоснования многомерной логической схемы данных в информационной системе была разработана методика анализа данных, собранных в ходе экспертного опроса, на основе теории нечетких множеств. Методика учитывает степень уверенности эксперта в каждом из вариантов ответа и позволяет получить более полную и точную взвешенную обобщенную прогнозную оценку реакций СЭС на возможные управляющие воздействия. Она состоит из следующих шагов: получение интегральной оценки, получение ЭИ, определение степени компетентности экспертов, получение обобщенного мнения экспертной группы, получение однозначного количественного результата опроса [7].
Остановимся на наиболее интересных моментах разработанной методики анализа данных. Итак, на шаге 1 применяется метод анализа иерархий [8]. Преимуществом применения иерархической структуры для анализа данных являются возможности разделения проблемы на составные задачи и фокусирования на интерпретации результатов отдельно анализируемой составляющей (рис. 5).
На шаге 2 эксперт производит выбор нескольких количественных оценок, которые включены в анкету и соответствуют его пониманию выбранного ответа. Для облегчения процесса задания степени уверенности в ответах на поставленные вопросы эксперты используют вербально-числовую шкалу Харрингтона (табл. 1).
Каждому вопросу P ставится в соответствие лингвистическая переменная значениями которой являются варианты ответов , где J i – количество вариантов ответа на i-й вопрос. Значение лингвистической переменной описывается в виде нечеткого множества, которое задается на базовом (четком) множестве действительных чисел , где s – весь возможный диапазон оценок лингвистической переменной Li. Результат сопоставления каждой оценки из вышеприведенного множества с количественным показателем степени уверенности – значение функции принадлежности, задаваемой вектором-строкой: .
Однако сформировать группу экспертов одинаковой компетентности на практике весьма трудно. В связи с этим необходимо определить степень компетентности каждого эксперта и учесть ее при анализе ЭИ и получении обобщенной прогнозной оценки [9].
Таблица 1
Ответ k-го эксперта на целевой i-й вопрос анкеты
Table 1
The answer of k-th expert for the objective i-th question
№ эксперта
|
Возможные значения изменения показателя эффективности, %
|
–75
|
–50
|
–25
|
0
|
25
|
50
|
75
|
1
|
0
|
0
|
0
|
0,3
|
1,0
|
0,8
|
0
|
Примечание: жирным шрифтом выделена высокая вероятность повышения показателя эффективности наполовину.
На шаге 3 для выявления вспомогательных характеристик в инструментарий экспертного опроса включается соответствующее множество дополнительных вопросов Каждому вопросу Dn ставится в соответствие множество дополнительных ответов Для преобразования ответов экспертов на дополнительные вопросы в количественные коэффициенты компетентности каждому -му варианту ответа на Dn-й вопрос ставится в соответствие положительный коэффициент Величина данного коэффициента зависит от номера варианта ответа на дополнительный вопрос. В результате выбор k-м экспертом однозначно определяет некоторый коэффициент из множества , который обозначается через . Эта величина зависит от всех ответов на дополнительные вопросы. Влияние уровня компетентности эксперта на нечеткую количественную меру реализуется путем выполнения операции «размывания» по следующему правилу: .
Для повышения точности прогнозной оценки реакций СЭС рассчитывается уровень компетентности экспертов для каждого дополнительного вопроса анкеты, включенного в инструментарий экспертного опроса, то есть определяются веса влияния каждой характеристики на компетентность эксперта. Проверка отличия характеристик экспертов осуществляется с помощью дисперсионного анализа (F-критерий), проводимого перед применением метода K-средних. Таким образом выявляются значимые характеристики экспертов в каждом кластере. Если p(F) меньше уровня значимости a, то нулевая гипотеза отвергается, в противном случае принимается (табл. 2).
Таблица 2
Значимые характеристики экспертов
Table 2
Experts significant features
Характеристики (Ch) экспертов
|
F-критерий
|
p-значение
|
Ch1
|
4,29
|
< 0,01
|
Ch2
|
1,18
|
> 0,05
|
…
|
Chw
|
5
|
< 0,01
|
При получении весов влияния характеристик на компетентность экспертов используется модифицированный метод нестрогого ранжирования, с помощью которого определяются обобщенные на случай предпочтения/безразличия атрибуты по отношению друг к другу веса Фишберна, обозначенные через Fbi:
где » – отношение безразличия; > – отношение предпочтения. В качестве модели при оценке реакций СЭС на управляющие воздействия Rctn принимается кортеж, в котором система отношений предпочтения одних атрибутов другим по степени их влияния на компетентность Km: Rctn =, где Gr – ориентированный граф, имеющий одну корневую вершину и не содержащий петель и горизонтальных ребер в пределах одного уровня иерархий; Atr – набор ка- чественных оценок уровней каждого атрибута в иерархии; E – система отношений предпочтения атрибутов по степени их влияния на компетентность: где Atrbi и Atrbj – атрибуты i-й и j-й вершин одного уровня иерархии. Наложение системы отношений предпочтения/безразличия на фрагмент графа показано на рисунке 6 [10].
Шаг 4 сводится к получению обобщенного мнения экспертной группы. В результате опроса множества всех экспертов для каждого i-го вопроса анкеты получается K нечетких количественных мер которые учитывают степени компетентности опрашиваемых экспертов. Нечеткое множество, характеризующее обобщенное мнение группы экспертов, определяется как пересечение нечетких мнений экспертов, имеющее функцию принадлежности, . Применяя конъюнкцию к нечетким множествам, соответствующим ответам экспертов, получаем обобщенную нечеткую оцен- ку, представленную множеством наименьших операндов по результатам экспертного опроса (табл. 3).
Таблица 3
Пример обработки нечетких оценок группы экспертов
Table 3
An example of processing fuzzy values of an expert group
№ эксперта
|
Возможные значения изменения показателя эффективности, %
|
Коэф. Km
|
–75
|
–50
|
–25
|
0
|
25
|
50
|
75
|
1
|
0
|
0
|
0
|
0,3
|
1,0
|
0,8
|
0
|
1,0
|
2
|
0
|
0,1
|
0,4
|
1,0
|
0,4
|
0,1
|
0
|
0,3
|
2*
|
0
|
0,5
|
0,7
|
1,0
|
0,7
|
0,5
|
0
|
–
|
…
|
K
|
0
|
0
|
0,3
|
0,8
|
1,0
|
0,8
|
0
|
0,8
|
K*
|
0
|
0
|
0,4
|
0,8
|
1,0
|
0,8
|
0
|
–
|
Обобщенная
оценка
|
0
|
0
|
0
|
0,3
|
0,7
|
0,5
|
0
|
–
|
Однозначный
результат
|
–
|
–
|
–
|
–
|
0,7
|
–
|
–
|
–
|
Примечание: * – «размывание» нечеткой количественной меры.
На шаге 5 получается однозначный количественный результат опроса. Для его получения выбирается элемент, имеющий максимальное значение степени принадлежности к полученному обобщенному нечеткому множеству мнений группы экспертов: Применяя дизъюнкцию к элементам нечеткого множества обобщенной оценки, получим однозначный количественный результат экспертного опроса, соответствующий максимальному значению операнда, который указывает на конкретный элемент базового множества Ui.
В действительности разработана математическая модель определения компетентности экспертов, позволяющая рассчитывать уровень компетентности опрашиваемого для каждого вопроса анкеты в отдельности, что способствует повышению эффективности обработки данных и точности прогноза; и методика представления ЭИ, учитывающая степень уверенности эксперта в каждом из вариантов ответа и позволяющая получить более полную и точную взвешенную обобщенную прогнозную оценку реакций СЭС на возможные управляющие воздействия.
Основываясь на построенной модели обработки данных, авторы спроектировали и реализовали ХД для Microsoft SQL Server 2008. Программные средства сбора информации, которые имеют трехуровневую архитектуру, были разработаны с использованием платформы Java EE и фреймворка Struts. Процессы извлечения, преобразования и загрузки данных реализованы как исполняемые скрипты языка php. Процедуры обработки и анализа данных реализованы с использованием математического пакета Matlab. С помощью системы компьютерной алгебры Maple была смоделирована и реализована процедура получения прогнозной оценки в задаче управления СЭС. Пользовательский интерфейс ИСА написан по технологии ASP.NET. С помощью разработанных програм- мных средств автоматизированы процессы сбора, хранения, обработки и анализа данных экспертного опроса, а также получения обобщенной прогнозной оценки мнений экспертной группы.
Основная страница ПО содержит ссылки на подсистемы ИСА и справки о ней. Структуру самой ИСА можно разбить на взаимодействие четырех модулей: общая статистика, детальная статистика, отчет, решение (рис. 7). Пользователь осуществляет попытку входа в систему, после чего получает страницу с выбором возможностей системы. Система предлагает общий просмотр статистики, адекватной выбранному пользователем временному интервалу. В детальной статистике пользователю предлагается выбрать интересующий уровень детализации. В системе возможен просмотр результатов как статистического, оперативного, так и интеллектуального анализа данных, образующих отчет. Система дает оценку прогнозного решения и обосновывает ее в подсистеме «Решение». В конце пользователь завершает работу с системой путем закрытия сессии web-браузера. Система поддерживает работу на русском и английском языках.
Реализованное ПО в виде ИСА «Апофаси» успешно внедрено в Пензенском государственном университете для управления системой менеджмента качества, в администрации Железнодорожного района г. Пензы для управления деятельностью органов местного самоуправления и в ЗАО ПФК «Аттика» (г. Волгоград) для принятия управленческих решений, способствующих сокращению времени простоя технологического оборудования и повышению эффективности производства.
Литература
1. Афонин А.Ю., Макарычев П.П. Система анкетирования на основе Web-технологий // Изв. вузов. Поволжский регион. Технические науки. 2010. № 3 (15). С. 49–56.
2. Меликов А.В. Обработка и анализ экспертной информации для управления социально-экономическими системами: дис…канд. техн. наук. Волгоград: Изд-во ВолгГТУ, 2013. 136 с.
3. Камаев В.А., Заболотский М.А., Полякова И.А., Тихонин А.В. Когнитивный анализ качества подготовки специалистов в вузах // Современные наукоемкие технологии. 2005. № 6. С. 26–27.
4. Редреев П.Г. Разработка и исследование обобщенной табличной модели данных со списочными компонентами: автореф…канд. физ.-мат. наук. Челябинск: Изд-во ЮУрГУ, 2011. 16 с.
5. Меликов А.В. Применение теории множеств для организации данных исходной реляционной базы данных // Прикаспийский журнал: управление и высокие технологии. 2011. № 4 (16). С. 16–22.
6. Алексеев В., Таланов В. Графы и алгоритмы // ИНТУИТ. 2006; URL: http://www.intuit.ru/studies/courses/101/ 101/info (дата обращения: 11.10.2013).
7. Камаев В.А., Меликов А.В. Анализ анкетных данных и оценки прогнозного решения на их основе к задаче управле- ния // Изв. ВолгГТУ. 2012. № 15 (102). С. 90–96.
8. Саати Т. Принятие решений. Метод анализа иерархий. М.: Радио и связь, 1993. С. 78–87.
9. Баранов Л.Г., Птушкин А.И., Трудов А.В. Нечеткие множества в экспертном опросе // Социология. 2004. № 19. С. 9–15.
10. Ажмухамедов И.М. Нечеткая когнитивная модель оценки компетенций специалиста // Вестн. Астраханского гос. тех. ун-та. 2011. № 2. С. 186–190.
References
1. Afonin A.Yu., Makarychev P.P. Web-based survey system. Izv. vuzov. Povolzhsky region. Tekhnicheskie nauki
[Univ. Proc. Volga reg. Technical Sciences]. 2010, no. 3 (15), pp. 49–56 (in Russ.).
2. Melikov A.V. Obrabotka i analiz ekspertnoy informatsii dlya upravleniya sotsialno-ekonomicheskimi
sistemami [Expert Data Processing and Analysis for Social and Economic Systems Management]. PhD Thesis. Volgo-grad. St. Tech. Univ. Publ., Volgograd, 2013, 136 p.
3. Kamaev V.A., Zabolotsky M.A., Polyakova I.A., Tikhonin A.V. Cognitive quality analysis of training special-ists in universities. Sovremennye naukoyomkie tekhnologii [Modern High Technologies]. Moscow, 2005, no. 6,
pp. 26–27 (in Russ.).
4. Redreev P.G. Razrabotka i issledovanie obobshchyonnoy tablichnoy modeli dannykh so spisochnymi
komponentami [Development and Research of Generalized Table Data Model with List Components]. PhD Thesis.
South-Ural St. Univ. Publ., Chelyabinsk, 2011, 16 p.
5. Melikov A.V. The use of set theory for the data management of the input relational database. Prikasp. zhurn.:
upravlenie i vysokie tekhnologii [Caspian Journ. Management and High Technologies]. 2011, no. 4 (16),
pp. 16–22 (in Russ.).
6. Alekseev V., Talanov V. Grafy i algoritmy [Graphs and Algorithms]. INTUIT Publ. 2006, available at:
http://www.intuit. ru/studies/courses/101/101/info (accessed October 11, 2013).
7. Kamaev V.A., Melikov A.V. Analysis of questionnaire data and estimation of a predictive decision according
to management task. Izvestiya Volgogradskogo gos. tekhnicheskogo universiteta [The news of Volgograd State Tech-nical Univ.]. 2012, no. 15 (102), pp. 90–96 (in Russ.).
8. Saaty T. Prinyatie resheny. Metod analiza ierarkhy [Decision-making. Analytic hierarchy process]. Moscow,
Radio i svyaz Publ., 1993, pp. 78–87 (in Russ.).
9. Baranov L.G., Ptushkin A.I., Trudov A.V. Fuzzy sets in expert survey. Sociologiya [Sociology]. 2004, no. 19,
pp. 9–15 (in Russ.).
10. Azhmukhamedov I.M. Fuzzuy cognitive estimate model for specialist’s reference. Vestnik Astrakhanskogo gos.
tekhnicheskogo universiteta [The Bulletin of Astrakhan State Tech. Univ.]. 2011, no. 2, pp. 186–190 (in Russ.).