Спасание людей на море и оказание помощи терпящим бедствие кораблям является одной из важнейших задач со времен начала мореплавания. Вплоть до ХХ века спасанием на море занимались разного рода сообщества, частные организации и ведомственные подразделения. 5 января 1921 г. было положено начало созданию Аварийно-спасательной службы Военно-Морского Флота (ВМФ), которая впоследствии была переименована в Службу поисковых и аварийно-спасательных работ (СПАСР) ВМФ и этом году отметила свое 100-летие [1].
Одним из приоритетных направлений совершенствования системы управления поисково-спасательным обеспечением ВМФ, определенных Концепцией развития системы поисково-спасательного обеспечения ВМФ на период до 2025 г., является автоматизация процессов принятия решений при проведении поисковых и аварийно-спасательных работ на море.
Специалистами НИИ «Центрпрограммсистем» был разработан комплекс средств автоматизации морской спасательной операции (КСА МСО).
Внедрение КСА МСО в структуру созданных на флотах Центров борьбы за живучесть и поисково-спасательного обеспечения существенно повысило эффективность принятия решений по оказанию помощи и позволило сформировать единый контур автоматизированного управления при проведении поисковых и аварийно-спасательных работ. Комплексы обеспечивают автоматизированное решение задач сбора, анализа и отображения информации об аварийном объекте, районе аварии, развитии аварийной ситуации, а также выполнение оперативно-тактических и специальных расчетов.
За последние годы комплексом были оснащены подразделения СПАСР ВМФ, принимающие участие в подготовке и проведении морских спасательных операций. Таким образом, был сформирован облик единой АСУ поисково-спасательным обеспечением ВМФ.
Успешное применение КСА МСО при проведении морских спасательных операций, а также учений и тренировок на практике подтвердило правильность организационно-технических решений, принятых при проектировании и реализации комплекса.
Совершенствование современных отечественных защищенных информационных технологий, появление новых требований к со-
ставу общесистемного и специального ПО автоматизированных систем военного назначения обусловили необходимость модернизации действующего комплекса с целью повышения эффективности его применения в новых условиях.
При этом основное внимание при доработке функционального ПО уделяется задачам повседневной деятельности, которые являются основой повышения эффективности применения комплексов при проведении морской спасательной операции.
Формируемая в результате автоматизации подсистема ведения актуальных сведений по потенциальным аварийным объектам (подводным лодкам, надводным кораблям, морским и воздушным судам, катерам), а также по силам и средствам поиска и оказания помощи снижает нагрузку на специалистов ВМФ при проведении морской спасательной операции за счет автоматизации поиска указанных сведений и одновременно повышает степень информационной поддержки принятия решений по подготовке и проведению поисковых и аварийно-спасательных работ. Таким образом, повышается эффективность применения КСА МСО при проведении морской спасательной операции.
С целью конкретизации указанных сведений были проанализированы основные задачи КСА МСО: сбор сведений по аварийной си-
туации, ее анализ и оценка, выполнение оперативно-тактических и специальных инженерно-технических и медико-физиологических расчетов, подготовка предложений по планированию и проведению поисковых и аварийно-спасательных работ, применению аварийно-спасательных сил и средств, а также разработка и выдача рекомендаций по оказанию помощи и поддержанию жизнедеятельности личного состава аварийного объекта. В результате установлено, что существенное влияние на эффективность выполнения задач оказывает заблаговременная подготовка сведений по потенциальным аварийным объектам (подводным лодкам, надводным кораблям, морским и воздушным судам, катерам), по составу, состоянию и возможностям сил и средств поиска и оказания помощи. Автоматизация ведения (учета и поддержания в актуальном состоянии) сведений в процессе повседневной деятельности специалистов подразделений СПАСР ВМФ способна значительно сократить временные затраты на их поиск и актуализацию в случае необходимости проведения указанных расчетов.
К подлежащим ведению в повседневном режиме сведениям по потенциальным аварийным объектам в первую очередь относятся состав (перечень) сил ВМФ, гражданских судов РФ и судов других стран, их возможности по поиску и спасанию людей и аварийных объектов. Автоматизированному учету подлежат возможности таких сил по поиску и спасанию людей на воде, поиску и допоиску аварийных объектов, находящихся на поверхности воды и лежащих на грунте, по поддержанию аварийных объектов на плаву, оказанию помощи аварийным подводным лодкам, лежащим на грунте, возможности по тушению пожара на аварийном объекте, буксировке и снятию его с мели, а также выполнению ряда подводно-технических работ.
Надводные корабли, подводные лодки и силы морской авиации, с одной стороны, являются аварийными объектами, а с другой – могут быть привлечены к проведению поисковых и аварийно-спасательных работ. В ходе совершенствования специального ПО КСА МСО были обеспечены накопление и поддержание в актуальном состоянии перечисленных сведений за счет автоматизации ведения информационных карточек по потенциальным аварийным объектам (подводным лодкам, надводным кораблям, морским и воздушным судам, катерам) (рис. 1).
В перечень сведений по силам и средствам поисково-спасательного обеспечения ВМФ входят паспорта и тактико-технические характеристики спасательных судов, их возможности по спасанию, обеспеченность спасательными средствами, состояние судовых запасов, ресурсные показатели и ограничения по эксплуатации, наличие средств связи, навигации, поиска, спасания и борьбы за живучесть, сведения по отсекам и укомплектованности личным составом, о составе и подготовленности водолазов к выполнению водолазных работ и т.д. Перечисленные сведения могут быть декомпозированы на более мелкие (детальные), по сути они представляют собой информационные группы (разделы) сведений, характеризующие состояние сил и средств поисково-спасательного обеспечения ВМФ с той или иной стороны. Накопление данных сведений обеспечивается за счет автоматизации ведения информационных карточек по силам и средствам поиска и оказания помощи (рис. 2).
Соотнесение (привязка) групп (разделов) информации к иерархической организационно-штатной структуре подразделений СПАСР ВМФ позволяет структурировать сведения о поисково-спасательных силах и обеспечить работу с ними наглядным и понятным для пользователя образом. При этом формирование и актуализация самой организационно-штатной структуры ВМФ является еще одной задачей, решение которой КСА МСО обеспечивает в повседневном режиме эксплуатации.
Помимо накопления и актуализации сведений по поисково-спасательным силам и средствам, важную роль в повседневной деятельности СПАСР ВМФ играет автоматизированный контроль готовности спасательных сил и средств к проведению поисковых и аварийно-спасательных работ. Это критически важная задача при проведении спасательных операций, а также при планировании деятельности подразделений ВМФ, принимающих в них участие. КСА МСО обеспечивает автоматизацию контроля готовности подразделений ВМФ к выполнению поисковых и аварийно-спасательных работ за счет выполнения ряда аналитических и расчетных задач, таких как, например, анализ ограничений по эксплуатации поисково-спасательных сил и средств ВМФ, оценка обеспеченности их морской спасательной техникой и имуществом, а также укомплектованности личным составом, в том числе водолазами требуемой квалификации, мониторинга наличия у них необходимых допусков к проведению водолазных работ и т.д. Автоматизация ведения информационных карточек, отражающих состав, состояние и возможности сил и средств поиска и оказания помощи в повседневном режиме, обеспечивает возможность своевременного реагирования в случае возникновения предпосылок к снижению их готовности к проведению морской спасательной операции.
Другим важным аспектом автоматизации задач повседневной деятельности является организация информационного взаимодействия КСА МСО, размещенных в разных подразделениях СПАСР ВМФ. Информационное взаимодействие комплексов, распределенных по центрам, управлениям, службам, является необходимым условием формирования единого контура автоматизированного управления при проведении морских спасательных операций. В повседневном режиме в рамках такого единого контура управления организуется взаимодействие КСА МСО разных подразделений ВМФ с целью актуализации (синхронизации) единой базы повседневных сведений по состоянию поисково-спасательного обеспечения ВМФ.
Основным принципом организации взаимодействия является наполнение (представление) необходимых информационных массивов от подчиненных органов военного управления (подразделений, организаций) к вышестоящим. Технически указанное взаимодействие реализуется за счет передачи асинхронных сообщений обмена посредством специальных каналов связи. Такой подход имеет множество преимуществ по сравнению с другими технологиями интеграции корпоративных приложений [2]. В общем случае он обладает большей скоростью, чем передача файлов, лучшей инкапсуляцией по сравнению с общей БД и значительно надежнее удаленного вызова процедур. Асинхронная передача сообщений от КСА МСО, размещенных в подчиненных подразделениях ВМФ, вышестоящим обеспечивает реализацию взаимодействия между комплексами по принципу «отправил и забыл», при котором отправляющий комплекс не приостанав-ливает свое функционирование до момента получения подтверждения приема и обработки сообщения от адресата. При этом бесконфликтность и непротиворечивость сведений достигаются в том числе за счет однозначного регламентирования зон ответственности органов военного управления за предоставляемые данные в соответствии с их местом в организационно-штатной структуре поисково-спасательных сил ВМФ. Важность достоверности и непротиворечивости накопленных в повседневном режиме сведений обусловливает особое значение задачи защиты информации от несанкционированного доступа и требует введения персональной ответственности руководителя соответствующего органа военного управления (подразделения, организации) за полноту и актуальность размещенной (представленной) информации. Такой подход, с одной стороны, требует применения дополнительных организационных мер, а с другой – обеспечивает относительную простоту процесса формирования и представления данных, предотвращает образование в них противоречий.
Детальная проработка функциональных требований по автоматизации ведения информационных карточек, в частности, по потенциальным аварийным объектам, потребовала совершенствования процесса разработки специального ПО комплекса за счет внедрения в него подходов, свойственных современным гибким методам и итеративным парадигмам.
Разработка АСУ военного назначения в РФ регламентируется в основном ГОСТами 34-й серии и РВ 15.203-2001. Классическая каскадная модель разработки, регламентируемая ГОСТ РВ 15.203-2001, не всегда эффективна при разработке специального ПО подобных АСУ. Недостаточная гибкость процесса разработки обусловливает неспособность реагировать на возникающие изменения требований к системе и может привести к превышению бюджета, срыву сроков и реализации невостребованного продукта, когда поставленные перед разработчиком задачи формально выполнены, однако цель создания системы не достигнута вовсе или достигнута частично. Зарубежные специалисты по разработке систем автоматизации [3–5] отмечают, что изменение функциональных требований к ПО является естественным процессом и частью объективной реальности, которую необходимо учитывать и даже поддерживать, поскольку обеспечение возможности уточнения и корректировки требований в процессе разработки системы является важнейшим условием создания действительно востребованного изделия, удовлетворяющего актуальные потребности заказчика.
Для совершенствования специального ПО КСА МСО совместными усилиями специалистов НИИ ЦПС и ВМФ был разработан и применен гибридный метод [5], заключающийся в постепенной итерационной реализации проекта с постоянной обратной связью от конечного пользователя в рамках действующих нормативных документов и государственных стандартов разработки систем специального назначения. Разработка выполняется итерациями, в каждой из которых в общем случае реализуется относительно небольшое приращение функционала комплекса. По завершении итерации формируется очередная версия изделия, которая демонстрируется заказчику с целью получения обратной связи. Важной особенностью выстроенного процесса разработки является обеспечение непрерывной совместной научной и инженерной работы разработчиков специального ПО и военных специалистов, эксплуатирующих комплекс.
Получение отзыва заказчика на очередную версию ПО обеспечивает возможность оперативной корректировки функциональных требований, предъявляемых к комплексу. Таким образом, планирование работы, анализ функциональных требований, проектирование, программирование, тестирование и документирование выполняются на каждой итерации. По согласованию со специалистами СПАСР ВМФ была выбрана длительность итерации от двух до четырех недель, что потребовало применения новых способов формирования функциональных требований и управления ими. Классический подход к оформлению функциональных требований в составе документов типа «Постановка задачи» оказался в этом случае неэффективным. При классическом выполнении ОКР постановки задач разрабатываются и утверждаются до начала непосредственной разработки ПО. Стремление экспертов в предметной области включить в постановки задач побольше требований приводит к их избыточности, провоцирует общее перепроектирование системы и затягивает процесс разработки. Однако по ходу развития проекта большая часть подобных требований может потерять свою актуальность, потребовать существенной корректировки, выйти за границы системы или вовсе оказаться надуманной.
Ввиду невозможности доработки и повторного согласования постановок задач на каждой итерации для формирования функциональных требований к модернизированному КСА МСО был использован метод описания требований к специальному ПО комплекса, заключающийся в разработке вариантов использования (прецедентов, пользовательских историй) [7, 8]. Варианты регламентируют требуемое поведение системы при выполнении пользовательских функций и в общем случае являются простыми текстовыми описаниями последовательности взаимодействия пользователя с системой.
При разработке функциональных требований к специальному ПО были применены классические методы системного анализа, моделирование на языке UML, построение диаграмм BPMN, методы предметно-ориентированного проектирования и построения доменных моделей предметных областей [9], а также положительно зарекомендовавшие себя подходы, заключающиеся в формировании карт воздействий (Impact Mapping) [10] и карт историй (Story Mapping) [11].
Impact Mapping позволил оценить соответствие функциональных требований целям проекта посредством построения специальных карт влияний, позволяющих анализировать функциональные требования как источники влияния на цели проекта и определить, какие действия ведут к достижению требуемого результата, а какие – нет, исключив последние из плана работ.
Story Mapping обеспечил проектирование функциональной архитектуры модернизированного КСА МСО на основе построения пользовательского пути или сценария применения комплекса специалистами подразделений СПАСР ВМФ в процессе повседневной деятельности. Применение этого подхода обеспечило команде разработчиков и военных специалистов возможность определения минимальной работоспособной версии продукта (MVP, Minimal Viable Product), приоритезации и планирования реализации вырабатываемых функциональных требований, не нарушая сценарии применения комплекса. Простота и отсутствие необходимости использования каких-либо специальных программных средств обеспечили удобство применения этих подходов для формирования и верификации функциональных требований к КСА МСО.
Разработанные ранее описания вариантов использования комплекса были дополнены полученными в результате аналитической и проектной работы диаграммами на формальных языках UML и BPMN, прототипами пользовательского интерфейса, описаниями доменных моделей предметной области и физических моделей БД и образовали спецификации функциональных требований к специальному ПО комплекса, которые затем были реализованы.
С использованием итерационного подхода к совершенствованию специального ПО КСА МСО актуальность сформулированных функциональных требований и корректность их реализации определялись по результатам демонстрации разработанного ПО специалистам подразделений СПАСР ВМФ, эксплуатирующим комплекс.
Затем разработанные спецификации функциональных требований к ПО были оформлены в виде постановок задач. При этом тру-
доемкость разработки этих документов, их
согласования и утверждения заказчиком значительно сократилась в силу того, что они содержали уже реализованные и продемонстрированные его представителям функциональные требования.
Применяемый гибридный метод разработки КСА МСО сочетает в себе достоинства классического подхода и современных гибких методов разработки ПО, а его применение позволило обеспечить высокий технологический уровень разработки комплекса при устаревших требованиях руководящих документов и ГОСТ.
Результаты практической апробации доработанного КСА МСО в ходе проведения ряда морских спасательных операций, учений и тренировок ВМФ подтвердили корректность выбранного подхода к модернизации комплекса и повышению эффективности его применения за счет автоматизации задач повседневной деятельности специалистов подразделений СПАСР, центров, управлений, служб, отрядов и групп ВМФ, принимающих участие в проведении поисковых и аварийно-спасательных работ. Заблаговременная подготовка и поддержание в актуальном состоянии сведений по потенциальным аварийным объектам по составу, состоянию и возможностям сил и средств поиска и оказания помощи позволили существенно сократить трудоемкость и временные затраты на выполнение задач.
Положительный опыт взаимодействия с ответственными специалистами ВМФ в ходе доработки КСА МСО показал, что организационные и технологические решения по выстраиванию процесса модернизации специального ПО могут быть использованы в ходе дальнейшего совершенствования и развития комплекса в составе единой системы поисково-спасательного обеспечения ВМФ.
Литература
1. Шайхутдинов Д.Г., Тарануха Е.В., Краморенко А.В., Овчинников А.В. К 100-летию Службы поисковых и аварийно-спасательных работ Военно-Морского Флота // Нептун. 2020. № 5. С. 6–17.
2. Фатрелл Р., Шафер Д., Шафер Л. Управление программными проектами. Достижение оптимального качества при минимуме затрат; [пер. с англ.]. M.: Вильямс, 2004. 1136 с.
3. Расмуссон Д. Гибкое управление IT-проектами. Руководство для настоящих самураев; [пер. с англ.]. СПб: Питер, 2012. 272 с.
4. Кон М. Scrum: гибкая разработка ПО; [пер. с англ.]. М.: Вильямс, 2011. 576 с.
5. Карпов В.В., Карпов А.В. Особенности применения современных методов разработки програм-много обеспечения защищенных автоматизированных систем // Программные продукты и системы. 2016. № 1. С. 5–11. DOI: 10.15827/0236-235X.113.005-012.
6. Коберн А. Современные методы описания функциональных требований к системам; [пер. с англ.]. М.: Лори, 2002. 263 с.
7. Вигерс К., Битти Дж. Разработка требований к программному обеспечению; [пер. с англ.]. М.: Русская редакция, 2014. 736 с.
8. Эванс Э. Предметно-ориентированное проектирование (DDD): структуризация сложных программных систем; [пер. с англ.]. M.: Вильямс, 2011. 448 с.
9. Аджич Г. Impact mapping: Как повысить эффективность программных продуктов и проектов по их разработке; [пер. с англ.]. М.: Альпина Паблишер, 2017. 130 с.
10. Паттон Д. Пользовательские истории. Искусство гибкой разработки ПО; [пер. с англ.]. СПб: Питер, 2019. 288 с.
11. Хоп Г., Вульф Б. Шаблоны интеграции корпоративных приложений; [пер. с англ.]. М.: Вильямс, 2007. 670 с.
References
- Shaikhutdinov D.G., Taranukha E.V., Kramorenko A.V., Ovchinnikov A.V. On the 100th anniversary of the Search and Rescue Service of the Navy. Neptun, 2020, no. 5, pp. 6–17 (in Russ.).
- Futrell R.T., Shafer D., Shafer L.I. Quality Software Project Management. 2002, 1677 p. (Russ. ed.: Moscow, 2004, 1136 p.).
- Rasmusson D. The Agile Samurai. How Agile Masters Deliver Great Software. 2010, 264 p. (Russ. ed.: Saint Petersburg, 2012, 272 p.).
- Cohn M. Succeeding with Agile: Software Development Using Scrum. Addison-Wesley Publ., 2010, 465 p. (Russ. ed.: Moscow, 2011, 576 p.).
- Karpov V.V., Karpov A.V. Modern software development methods for secured automated systems. Software and Systems, 2016, no. 1, pp. 5–11. DOI: 10.15827/0236-235X.113.005-012 (in Russ.).
- Cockburn A. Writing Effective Use Cases. Addison-Wesley Publ., 2001, 259 p. (Russ. ed.: Moscow, 2002, 263 p.).
- Wiegers K., Beatty J. Software Requirements. 2013, 619 p. (Russ. ed.: Moscow, 2014, 736 p.).
- Evans E. Domain-Driven Design. Tackling Complexity in the Heart of Software. Addison-Wesley Publ., 2003, 563 p. (Russ. ed.: Moscow, 2011, 448 p.).
- Adzic G. Impact Mapping. Making a Big Impact with Software Products and Projects. 2012, 133 p. (Russ. ed.: Moscow, 2017, 130 p.).
- Patton J. User Story Mapping. Discover the Whole Story, Build the Right Product. O’Reilly Media Publ., 2014, 278 p. (Russ. ed.: Saint Petersburg, 2019, 288 p.).
- Hohpe G., Woolf B. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. 2011, 741 p. (Russ. ed.: Moscow, 2007, 670 p.).