ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Journal influence

Higher Attestation Commission (VAK) - К1 quartile
Russian Science Citation Index (RSCI)

Bookmark

Next issue

4
Publication date:
09 December 2024

The article was published in issue no. № 1, 1998
Abstract:
Аннотация:
Authors: Gordeev L.S. (l.s.gordeev@yandex.ru) - D. Mendeleev University of Chemical Technology of Russian Federation, Moscow, Russia, Ph.D, () -
Ключевое слово:
Page views: 17079
Print version
Full issue in PDF (1.60Mb)

Font size:       Font:

В работе исследуется производство синтетического каучука эмульсионной сополимери­зацией бутадиена с a-метилстиролом при температуре 4-8 °С по железо-трилоновому рецепту полимеризации с применением смеси мыл диспропорционированной канифоли и жирных кислот. Общая схема производства каучука приведена на рисунке 1. Производство включает следующие отделения:

1) приготовление углеводородной шихты;

2) приготовление растворов;

3) сополимеризация;

4) отгонка незаполимеризованных мономеров;

5) рециркуляция мономеров;

6) выделение латекса и сушки ленты каучука;

7) упаковка каучука.

Рис. 1. Общая схема производства бутадиен-a-метилстирольного каучука: 1 – бутадиен; 2 – a-метилстирол; 3 – раствор серной кислоты
Качество выпускаемого каучука непосредственно зависит от работы каждого из приведенных отделений, среди которых выделяются три ключевых: сополимеризация, отгонка мономеров, выделение и сушка каучука. Однако на практике довольно часто отклонения работы отделения или отдельной установки от регламента давали отказ работы отделения. В случаях неисправности нарушается работа последующих отделений и в конечном счете снижается качество получаемого каучука.

Состояние работы каждого отделения определяется их технологическими параметрами. Как правило, среди всех технологических параметров выделяются основные, которые оказывают наиболее серьезное влияние на работу. Контролируя основные параметры, возможно свести работу отделения в соответствие с регламентом. При отклонении основных параметров необходимо заблаговременно определять причины и принимать необходимые меры для их устранения.

Однако в силу сложности протекающих в отделении процессов невозможно быстро обнаружить неисправности и их причины с помощью точной математической модели (такой модели может и не быть). Для выполнения данной задачи мы предлагаем применять искусственные нейронные сети. В качестве входных элементов нейронной сети берутся основные технологические параметры. Так как работа указанных трех отделений наиболее сильно влияет на качество выпускаемого продукта, то, на наш взгляд, целесообразно применять нейронные сети для осуществления непрерывного контроля основных технологических параметров данных отделений. В связи с тем что эти отделения работают относительно самостоятельно, мы предлагаем создавать нейронные сети для каждого из них.

В качестве примера в таблице приведены входные и выходные элементы нейронной сети отделения полимеризации, где входные элементы могут соответствовать неисправностям в отделениях. В таблице предложены и рекомендации по устранению неисправностей.

Структура нейронных сетей для управления отделениями следующая.

Для отделения сополимеризации: Nin = 5, Nout = 13, Nhid = 13, обучение ведется до точности e = 0,0005, Niner = 716. Для отделения выделения и сушки каучука: Nin = 12, Nout = 30, Nhid = 7, точность обучения e = 0,0005, Niter = 613.

Для управления производством синтетического каучука нами разработана экспертная система (ЭС) на базе нейронных сетей. Нейронные сети используются в качестве модели представления знаний и составляют ядро базы знаний. Использование нейронных сетей в трех ключевых отделениях позволяет осуществлять непрерывный контроль основных технологических параметров отделений. В случае отклонения этих параметров нейронная сеть помогает быстрее определять причины этих отклонений и выдает конкретные рекомендации по их устранению.

Например, если температура в колонне отделения отгонки мономеров превышает 50 °С (в кубе), тогда нейронная сеть данного отделения выдает две возможные причины: (1) подача пара в колонну увеличена, (2) температура пара превышает 110 °С вследствие недостаточной подачи умягченной воды на увлажнение. На основании сделанных выводов нейронная сеть изменяет текущие значения нескольких переменных во временной базе данных. Далее ЭС, используя выданную нейронной сетью информацию, заносит ее в существующие БД и БЗ, уточняет конкретную причину завышения температуры и, наконец, выдает рекомендации по устранению данного отклонения.

 

Диагностика неисправностей в других отделениях (то есть в отделениях приготовления углеводородной шихты и растворов, отмывки шихты, компремирования бутадиена, дистилляции a-метилстирола и упаковки ленты каучука) осуществляется с помощью продукционных правил, так как в этих отделениях причинно-следственные связи относительно просты и нет необходимости использовать нейронные сети для представления знаний.

Таблица

Отделение сополимеризации

Входной слой:

x1 - завышение температуры в полимеризаторах;

x2 - завышение давления на полимеризаторах;

x3 - снижение конверсии мономеров;

x4 - занижение вязкости каучука в латексе;

x5 - завышение вязкости каучука в латексе.

 

Выходной слой:

 y1 - недостаточная подача рассола;

 y2 - высокая температура рассола;

 y3 - попадание газа в рассол;

. . .

 y13 - занижение дозировки меркаптана;

 y14 - повышенное содержание ацетиленистых, карбонильных соединений в бутадиене;

 

Методы устранения неполадок:

Z1 – увеличить подачу рассола в полимеризаторы;

Z2 – поставить в известность цех Е-8 о необходимости понижения температуры рассола;

Z3 – снизить подачу шихты на батарею;

. . .

Z12 – выяснить причину повышения содержания ацетиленовых карбонильных соединений в бутадиене;

Z13 – дать дополнить дозировку меркаптана на конверсию 40 %.

Рис. 2. Схема системы управления производством синтетического бутадиен-a-метилстирольного каучука

Итак, в случае отклонения технологических параметров от регламентных или отказа работы производства, созданная система управления позволяет быстро определять причины этих неисправностей и выдавать соответствующие конкретные рекомендации по их устранению.

 

Разработанная система управления реализована в рамках программной оболочки ИНТЕР-ЭКСПЕРТ. В данном инструментальном программном пакете рассмотрены следующие возможности, объединяющие переработку данных знаний в единую среду:

1) создание базы знаний на продукционных правилах;

2) создание и использование ЭС на базе продукционных правил;

3) управление реляционными базами данных;

4) использование электронных ведомостей на разделенных экранах;

5) управление сложными формами и исчерпываемой графикой;

6) полное структурное программирование;

7) естественный язык (интерфейс);

8) другие функции.

Среди перечисленных функций ИНТЕР-ЭКСПЕРТа мы используем (1)-(3), (5)-(7). Следует отметить, что эти функции могут осуществляться в рамках ИНТЕР-ЭКСПЕРТа как в единой среде.

В ИНТЕР-ЭКСПЕРТе рассмотрены три интерфейса с операционной системой MS-DOS. Эти интерфейсы находятся в выполняемой части продукционных правил, в командных процедурах, в реляционных базах данных. Первый и третий интерфейсы позволяют создать механизм использования нейронной сети в качестве модели представления знаний в ИНТЕР-ЭКСПЕРТе. Второй и третий интерфейсы дают возможность создавать нейронные сети (обуче­ние, проверка и т.д.).

Таким образом, в рамках программной оболочки ИНТЕР-ЭКСПЕРТ разработана система управления производством синтетического каучука (рис. 2). Разработанная система реализована на компьютерах IBM PC AT/XT с операционной системой MS DOS или PC DOS. Исходный текст составляет 1280 Кб, в том числе 328 Кб – создание нейронной сети, 210 Кб – механизм использования нейронной сети в качестве модели представления знаний, остальные 742 Кб – знания для управления работой отделений в производстве каучука.


Permanent link:
http://swsys.ru/index.php?id=967&lang=en&page=article
Print version
Full issue in PDF (1.60Mb)
The article was published in issue no. № 1, 1998

Perhaps, you might be interested in the following articles of similar topics: