ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Journal influence

Higher Attestation Commission (VAK) - К1 quartile
Russian Science Citation Index (RSCI)

Bookmark

Next issue

2
Publication date:
16 June 2024

Articles of journal № 1 at 2021 year.

Order result by:
Public date | Title | Authors |

11. Network anomalies detection by deep learning [№1 за 2021 год]
Author: V.N. Zuev
Visitors: 5573
The paper discusses the machine learning application for detecting anomalies in network traffic. Artifi-cial neural networks of deep learning are used as a tool. In this paper, the NSL-KDD data set is ana-lyzed and used to study the effectiveness of deep learning neural networks in detecting anomalies in network traffic patterns. The most important aspects of this dataset are the imbalanced class distribu-tion. The paper describes the method of effective usage of objective functions backpropagation algo-rithms in order to train the neural network on imbalanced samples. Using the backpropagation algo-rithm is connected with many difficulties. The major problem is the ability to generalize the neural network. The ability to generalize is the most important characteristic of a neural network. It is mean that trained on studying data neural network is capable to produce output value by using unknown da-ta. However, using for training noisy data decreases the ability to generalize the neural network. The proposed method makes it possible to more efficiently calculate the value of the aim function, which is the basis of the error back-propagation algorithm. The method is well fit for the heterogeneous sample and can use priority information about the sample’s significance. The pepper described an algo-rithm of the method. Using this method will improve the accuracy of the neural network for classifica-tion and regression problems. The experimental result shows that it well suits the designed method for network anomaly detec-tions.

12. Method of testing the training models for the adequacy [№1 за 2021 год]
Authors: Ilin V.А., Kiryushow N.P.
Visitors: 3682
The paper substantiates the necessity of assessing the quality of simulated models of trainer systems and their adequacy to actual systems and describes a method for evaluating the adequacy of simulation models. The simulated model must provide the required accuracy and reliability of the process simulation. The simulation validity assumes that the model meets some specific requirements that allow us to test its quality. The model quality analysis involves testing for compliance with the modeling goals. In general, the evaluation of the model properties includes the model adequacy assessment, the simulation results’ ac-curacy (simulation error), the stability of the simulation results of the studied processes, and the study of the model sensitivity. The model adequacy assessment reflects its compliance degree with the actual system. The algo-rithm for the model adequacy checking comprises comparing the outputs (responses) of the model and the actual system with the same input values. Here, statistical methods are used to test hypotheses, for example, by the t-Student criterion. The path of determining the estimates of the mathematical expectation and variance of the deviation of the components of the response vector tests the accuracy of the simulation. The variance of the flow values tests the stability of the simulation results. The simulated model sensitivity refers to the degree to which the model's output parameters or re-sponses change depending on the input characteristics. Methods of assessing the adequacy of the models include the steps of selection criterion of the va-lidity of the simulation model to the subject of the study, the production of measurements of the re-sponse values of the real system and the simulation model, the computational stage with the assessment of the adequacy of the simulation model to real systems, the determination of the adequacy of the simulation model. The evaluation method for assessing the models' adequacy includes the selecting stages the criteri-on for the adequacy of the simulation model to the subject of research, making measurements of the re-sponse values of the real system and the simulation model, the computational stage with the assessment of the adequacy of the simulation model to actual systems, determining the adequacy of the simulation model.

13. The quality control of training equipment [№1 за 2021 год]
Authors: Ilin V.А., Pakhomov E.S.
Visitors: 4017
Using training tools requires an assessment of their effectiveness to achieve the goals of training and training. The effectiveness of training equipment can be determined only in the process of their intend-ed use, which is not always possible; we can only talk about the effectiveness of training using training equipment. The authors of the paper propose to test the effectiveness of simulators and training complexes through a system of indicators of their qualities. The quality criteria of training equipment can be their ability to implement training and training programs. In accordance with the content and structure of the educational process, the type of autonomous simulators and simulators as part of training complexes, the stages of their life cycle, and operating conditions, the paper proposes four groups of quality indi-cators: didactic, functional, technical, and economic, and establishes their relationships and evaluation methods. Through the indicators of didactic qualities, it is possible to assess the compliance of educational and training tools with the requirements of the educational process, its structure, and content. Indica-tors of functional qualities allow us to evaluate the capabilities of training tools for implementing the didactic requirements of educational programs. Indicators of technical qualities evaluate the character-istics of training tools that ensure their use in the educational process. Economic indicators allow us to estimate the costs at the primary stages of the life cycle of training equipment. Economic indicators allow us to estimate the costs at the primary stages of the life cycle of training equipment. The proposed system of qualities of training equipment, along with a system for evaluating the effectiveness of training with their use, allows us to justify the feasibility of creating training equipment, optimize their structure depending on the requirements and problems of training.

14. The performance evaluation of simulator training by the method of target management [№1 за 2021 год]
Authors: Ilin V.А., Savvateev A.S.
Visitors: 5218
The extensive use of educational processes of educational institutions and in the system of combat training determines the relevance of the development of methods for justifying training equipment, evaluating their effectiveness and the effectiveness of training provides. One of these methods may be the target management method, proposed in this paper and not previously used in this subject area. The method of targeted training management involves determining the goals of training and the re-quirements for its means, the structure, and content of training, and testing the results of training. The paper justifies the choice of different categories of students of different simulators and meth-ods for evaluating the effectiveness of training for different students’ categories. Based on the func-tions of the students' activities, the authors propose and justify the activity classification of the trained operators and their division into three categories, three levels. Under the accepted classification, the authors define the requirements for training equipment and the organization of training equipment. Methods of forming assignments for students under the objectives of training and evaluation of its re-sults, including automation of training assessment, are fundamental in the organization of simulator training based on the method of target management. The paper suggests the following procedure for the development of mathematical software automate the assessment of the preparation: the choice of control parameters and the objective function devel-opment, the parameters and rating scales exercises development, the drafting of the algorithm and pro-vide recommendations. The target management method for evaluating the effectiveness of simulator training is developed because of over ten years of experience in using simulators in the educational process and the authors’ personal participation in their creation and use.

15. Automation of day-to-day tasks as a modernization of a marine rescue operation automation suite [№1 за 2021 год]
Authors: Karpov A.V., А.А. Sakharov
Visitors: 3586
The Armed Forces of the Russian Federation have phased in a marine rescue operation automation suite (MROAS) in August 2014. The suite is designed to automate the activities of specialists of the Navy search and rescue service during their daily activities, as well as when making decisions on search and rescue operations for emergency situations on Navy ships and vessels. The paper presents modern approaches to automating day-to-day tasks solved by specialists of the Navy search and rescue service: a hybrid method for developing special software, methods of forming functional requirements for a modernized MROAS, a generalized list of information that the suite ac-cumulates and keeps up to date, the basic principles of organizing information interaction between the suites distributed among the Navy command and control bodies at different levels.

16. Continuous monitoring and quality control system for glassworms production [№1 за 2021 год]
Authors: Matveev, Yu.N., M.M. al-Okabi, Stukalova N.A.
Visitors: 2748
The paper describes the architecture, methods, and tools used to create a system for continuous moni-toring and quality control of glassworms production based on optical technologies and methods of technical vision. Technical vision techniques and optical technologies are often used to check the glass product quality. However, the glassworms production process has its own characteristics that do not al-low the use of standard solutions. The analysis of the technological process made it possible to identify those specific features of production that must be taken into account when using optical technologies and methods of technical vision in the system of continuous monitoring and quality control of glassworms production. The spe-cifics of the technological process include: strong vibration of equipment and glass tube in the process of its movement; the high temperature of the glass tube, which does not allow the optical registration means to be located near the observed object; the need to identify tiny defects, the size of which ranges from tenths to several millimeters, from a long distance; high speed of movement of the glass tube and the need to inspect the glass tube having a round shape from all sides during movement. This is far from the complete list of problems that have been solved in the process of developing a system for con-tinuous monitoring and quality control of glassworms production based on optical technologies and technical vision methods. The paper describes methods and procedures for finding defects and determining their localiza-tion. A procedure for automatic determination of the control area is described, which allows you to keep an object in the camera’s view, despite its vibration. To solve the problem of circular inspection of a moving hot glass tube, a multi-movie camera system was developed that allows it to be inspected from all sides, without its rotation. There are descriptions of the components of an automated monitor-ing system and the glassworms quality control, including a subsystem for collecting and recording vid-eo data, a subsystem for video data preprocessing, a subsystem for deep processing of video data, a control subsystem, and a graphical user interface, as well as their interconnections. There result from preliminary tests of the system in the paper.

17. Geovisualization system of territorial indicators for decision support in situational centers of socio-economic analysis [№1 за 2021 год]
Authors: A.V. Medvedev, E.Yu. Rapp, I.A. Shusharin
Visitors: 1766
One of the critical components of supporting management decision-making in the analysis area, plan-ning and forecasting of territorial social, and economic development is to provide experts the possibil-ity of geovisualization of territorial characteristics of social and economic objects in the operational interaction mode. The paper describes a geovisual system for displaying socio-economic information developed by the authors in the desktop application form, which allows for effective decision-making support in ana-lyzing the socio-economic development of territories. The paper specifies the analytical potential of this system, presents its interface and menu. The authors provide screenshots of the geovisual system operation when it is used in accordance with the current information and analytical center of a higher education institution, illustrating some described possibilities. Analytical processing of coordinates and object characteristic in the proposed geovisual system, in particular, consists in their automated ranking, clustering, representation of objects in different color ranges, in the construction of bar charts and graphs over time, depending on the values of the actual so-cio-economic characteristics of objects stored in a user-friendly format. Object information and its characteristics are automatically read from an Excel file, each sheet of which corresponds to the time of its fixation (observation, recording) in time units selected by the user. The form of information store in the system is a cube with the axes "list of objects", "list of socio-economic characteristics of ob-jects", "moments of data fixation", which allows using the capabilities of OLAP analysis when sorting, ranking, filtering available information about objects. The listed capabilities of the geovisual system are effective when used in the first line support con-ditions for decision making in situational centers and situational rooms in the socio-economic analysis of the functioning of enterprises and territories.

18. Method for detecting source noise signals of the radio emission based on fractal analysis [№1 за 2021 год]
Authors: R.R. Mukhamedov, V.V. Utkin , D.S. Voinov
Visitors: 3687
Existing energy detectors can detect a signal at a SNR of at least 20 dB. For energy detectors, the state-ment about the presence of a signal is made by the signal strength. LPI (low-probability-of-inter- cept) – mode, implies the use of signals with a low power level. A decrease in the radiated peak power leads to a decrease in the range of conducting radio surveillance. For radio surveillance stations, it is necessary to provide a detection range of over 174 km, which is not provided by energy detectors for radar stations using these types of signals, therefore, it is neces-sary to develop a detector based not on the signal power, but on other physical principles. To solve this problem, the authors consider the possibility of using fractal analysis of signal spectrograms. To present the results of the fractal analysis of the signal spectrograms, which allows detecting broadband signals with a low power level. The considered version of the broadband signal detector, based on the fractal analysis of spectro-grams, allows detecting signals with a signal-to-noise ratio of less than -5 dB. The results were obtained based on modeling broadband signals in the PyCharm environment in the Python 3.8 programming language, with a low power level, and calculating the fractal dimensions of the spectrograms of these types of signals. According to the Pearson agreement criterion, it is proved that the fractal dimension obeys the normal distribution law, therefore, it is possible to use the Neumann – Pearson detection cri-terion. The probabilities of correct detection of these types of signals are calculated based on the crite-rion. Based on these calculations, it was concluded that with a signal-to-noise ratio of less than -5 dB, the probability of correct detection is over 95%. The decision about the presence of a signal is made based on the calculation of the fractal dimension of the spectrogram of the received signal. The practical significance of this work lies in the fact that the use of fractal analysis of detected sig-nals makes it possible to detect a signal at a greater distance than when using the energy detection method.

19. Application of the purposeful behavior principle in the cognitive control system of a radar station [№1 за 2021 год]
Author: A.A. Nepryaev
Visitors: 3376
The application of cognitive technologies in radar is a rapidly developing area with many opportunities for innovation. A significant obstruction in this discipline is the lack of a common understanding of how the architecture of a multi-function radar control system should be designed to include multiple feedback loops that enable the manifestation of cognition. In the radar community, there is still no pre-cise definition of what distinguishes an adaptive system from a cognitive one. This work is intended to expand and substantiate the list of elements and qualitative characteristics that must be present in a radar system in order for it to be classified as cognitive. The author suggests the use of a metacognitive approach to developing a model of purposeful behavior that selects the most profitable strategy and controls the cognitive processes involved in learning. The action selection based on the perception of the environment is the fundamental characteristic of the cognitive system. Finally, the choosing process leads to the optimization problem, when it is de-sirable to choose the action with the maximum reward. This is determined by the degree of similarity of the current internal and external states with the target one. This is based on the principle that radar sys-tems should not be classified as cognitive or non-cognitive, but should be evaluated by the degree of severity of cognitive functions. The author suggests a gradation of cognitive systems based on the prin-ciple of purposeful behavior of control system elements. The article substantiates the need to consider the ability of the system to function in actual time and computing power as a sign that determines the degree of expression of its cognitive abilities.

20. Ontology processing in attributive access control in cyber-physical systems [№1 за 2021 год]
Author: Poltavtseva M.A.
Visitors: 3498
The paper is devoted to supporting the processing of large-scale ontologies in a relational server and considers a separate problem of representing and processing ontologies when implementing attributive (ontological) access in cyber-physical systems. The relevance of the paper is due to the attack growth on industrial cyber-physical systems and the improvement of access control methods. The most promising direction today is attributive access based on ontologies. On the one hand, distributed large-scale industrial cyber physical systems use a large and increasing number of rules for attributive access control, on the other hand, storage techniques and processing such data using specialized technologies must meet the requirements for information pro-tection. This leads to the necessity of applying advanced (including certified) tools and necessitates the use of a relational server for storing and processing data. Therefore, the searching problem of the most rational representation and processing of access control rules is highly relevant. The paper proposes a method for representing the rules of ontological inference based on the impli-cations of binary trees to support ontologies in the problem of attributive access control of cyber phys-ical systems. There is a data representation, and analysis of methods for displaying information in an industrial relational server. An example of support for access control rules shows experimental testing of the representation of ontological inference rules based on the implications of binary trees. Because of analytical effort and experimental testing, the most rational solution for this problem is to use the storage technique for a forest of trees based on a materialized path.

← Preview | 1 | 2 | 3 | Next →