В условиях телекоммуникационной среды информационная система комплексного мониторинга и управления развитием студента должна удовлетворять следующим требованиям:
- осуществлять сопровождение учебной, творческой и личностной деятельности студента в течение всего периода обучения;
- обеспечивать оперативность обновления информации не реже нескольких раз в месяц;
- обеспечивать открытость, гласность и доступность всей первичной информации для студентов, преподавателей, руководителей всех уровней, родителей и других заинтересованных лиц;
- иметь общественное согласие в отношении алгоритма получения интегральных оценок и механизмов использования этих оценок для принятия управленческих решений;
- использовать современные, наиболее выразительные средства представления информации для ее анализа и сопоставления всеми участниками учебно-воспитательного процесса;
- применять наукоемкие современные математические методы моделирования и принятия решений для максимально эффективного использования собираемой системой обширной, многоаспектной информации;
- оценивать эффективность принимаемых решений через систему реализации обратной связи;
- иметь возможность простой и быстрой модернизации при изменениях в характеристиках объекта управления.
Разработанный в соответствии с этими положениями процесс управления учебной деятельностью студентов показан на рисунке 1. Его особенностями являются высокая частота измерения состояния процесса и значительный объем измеряемых параметров, не реализованные ни в одной из существующих систем управления учебным процессом, а именно, еженедельно. Это достигается благодаря использованию автоматизированной информационной системы и алгоритму комплексной оценки хода учебного процесса.
Полнота информации позволяет оперативно и эффективно управлять учебным процессом, не ожидая конца семестра, причем ЛПР видна информация о деятельности не только студента, но и профессорско-преподавательского состава, что дает возможность корректировать работу в зависимости от ситуации.
Управление творческой деятельностью студентов в предлагаемой технологии отличается тем, что основано на введении наддисциплинарного курса «Технология исследовательской профессиональной деятельности», который ведется в течение всего времени обучения в вузе. В рамках этого курса каждый обучаемый входит не только в свою студенческую группу, изучая учебные дисциплины, но и в какую-либо бригаду научной группы, занятой решением конкретной науч- ной проблемы. Схема управления творческой деятельностью студентов показана на рисунке 2.
Управление происходит на двух уровнях – стратегическом и тактическом. На стратегическом уровне научный руководитель осуществляет постановку и корректировку содержания работы, проводит индивидуальные консультации по вопросам, вызывающим затруднения у студентов. На тактическом уровне студенту еженедельно выдаются задания, по которым он должен написать отчет и получить оценку. Имеется возможность прогнозировать и проектировать будущую оценку по творческой работе с помощью теста творческой квалификации.
Процесс управления внеучебной деятельностью студентов осуществляется по организационной схеме, представленной на рисунке 3. Информационная система, обеспечивающая разработанную технологию, позволяет отражать и учитывать конкретные достижения студентов в любых областях: науке, спорте, культурной и общественной деятельности. Внеучебная деятельность оценивается по записям, введенным в систему мониторинга достижений. Любой член коллектива может через Интернет записать информацию о своих или чужих достижениях в различных сферах жизни. Информация немедленно становится видной всем. Таким образом удается привлечь внимание студентов к социальной значимости для них самих и для общества в целом их усилий и достижений в области науки, спорта, организационной деятельности, стимулировать воспитательную работу со студентами по различным направлениям; благодаря постоянной оценке ее текущего уровня в зависимости от конкретных результатов, проявившихся в деятельности каждого члена студенческого коллектива, разбудить здоровый соревновательный интерес студентов не только в сфере успеваемости и творческого развития, но и в сфере их личностного развития.
Математическая модель комплексной оценки деятельности студента
Алгоритмы свертки показателей деятельности студента разрабатываются в стране с момента появления АСУ вузами. Существующие рейтинговые системы имеют общие недостатки: отсутствует комплексная оценка деятельности студента в вузе, включающей внеаудиторную активность; используется лишь небольшое количество показателей, которые не могут всесторонне охарактеризовать уровень развития тех или иных компетенций студента; частота проводимых измерений не позволяет в полной мере осуществлять управленческие воздействия; методы свертки показателей носят условный характер (например, весовые коэффициенты), хотя существуют современные математические методы определения весовых коэффициентов при разных уровнях значимости.
Разработанный метод комплексной оценки деятельности студентов в вузе лишен указанных недостатков благодаря тому, что, помимо большого объема информации, еженедельно поставляемого автоматизированной информационной системой, использует мощный аппарат современной теории принятия решений, а именно, методы ПРИНН [1] и АНР [2].
Структура модели показана на рисунке 4. Таким образом, ключевой проблемой модели является поэтапное свертывание информации в агрегированные показатели – рейтинги. При решении этой задачи используем метод ПРИНН. Для анализа и обоснования применяемого метода рассчитаем комплексный рейтинг методом АНР и затем рассчитаем корреляцию значений. Коэффициент корреляции при расчете рейтингов соста- вил 0,93.
Разработанная математическая модель реализуется компьютерной программой, входящей в информационную систему поддержки разработанной технологии управления. Однако важную роль играет понятность результатов, получаемых на базе этой модели для всех участников учебно-воспитательного процесса, в первую очередь студентов и их родителей. Поэтому разработана упрощенная модель расчета комплексной оценки, дающая результаты, близкие к результатам полной математической модели, однако имеющие простое объяснение. Расчет комплексной оценки деятельности студента (КОДС) осуществляется по формуле КОДС=30+ВР+0,2*КТ2–НЗ–КТ0, где 30 баллов – первоначальный бонус, ВР – внеучебный рейтинг, КТ2 – контрольные точки, зачтенные с оценкой «отлично», НЗ – процент непосещений занятий по неуважительным причинам, КТ0 – процент неаттестованных точек.
Математическая модель кластеризации студенческого контингента
В предложенной технологии кластеризация необходима, чтобы разбить студенческий коллектив на бригады для ведения научно-исследовательских работ, закрепить руководителей из числа старшекурсников за младшекурсниками и т.д. При этом известные методы кластеризации, такие как алгоритмы семейства k-средних, невозможно напрямую использовать для решения поставленной задачи, так как, помимо расстояния между кластеризуемыми объектами, необходимо учитывать ряд жестких ограничений на совместное включение в кластеры некоторых малых групп объектов (например, студентов из одной местности, дружеской группы, спортивной команды, творческого коллектива и т.п.). Поэтому необходимо создание специальной оптимизационной математической модели. Поставим задачу кластеризации в общем виде. Будем рассматривать объекты кластеризации и потенциальные центры кластеров. Например, в задаче организации индивидуального шефства студентов над студентами объектами кластеризации являются студенты младших курсов, а центрами – старшекурсники.
Пусть i – номер объекта кластеризации, i=1, …, K; j – номер центра, j=1, …, M. Обозначим через Rij расстояние от i-го объекта кластеризации до j-го центра. Расстояние может рассчитываться через отдельные характеристики объектов кластеризации и центров, такие как значения различных рейтингов (учебного и внеучебного), увлеченность теми или иными направлениями внеучебной деятельности и пр.
Введем максимально допустимый радиус кластера α. Тогда определяется признак rij возможного отнесения элементов i, j к одному кластеру,
rij=
Пусть Nmax – максимально разрешенное количество элементов в кластере; qj – признак того, что j-й элемент является центром кластера,
qj=
xij – признак включения i-го объекта в кластер с центром j,
xij=
(xij, qj – булевы переменные).
Введем ограничения, отражающие требования, предъявляемые к задаче кластеризации.
1. Каждый объект кластеризации должен попасть ровно в один кластер: , i=1, …, K.
2. В кластере расстояния объектов кластеризации до центра кластера не должны превосходить максимально допустимое значение α: rij³xij, i=1, …, K; j=1, …, M.
3. Ограничение, накладываемое на количество элементов в кластере, не должно превышать Nmax. В данном примере это означает, что за руководителем должно быть закреплено не более Nmax подшефных: , j=1, …, M.
Общее количество кластеров Nобщ определяется формулой Nобщ=.
Теперь задача оптимальной кластеризации формулируется как задача булева линейного программирования при критерии Nобщ®min.
Пусть при формировании кластеров требуется учесть принадлежность как объектов кластеризации, так и центров кластеризации некоторым общностям. Пусть R – число общностей, а Kr, r=1, …, R – множество номеров объектов, входящих в эти общности: Kr={g1, g2, …, gNr}. Введем матрицы признаков Gir и mjr принадлежности объектов кластеризации и центров этим общностям:
, i=1, …, K, r=1, …, R,
, j=1, …, M, r=1, …, R.
Рассмотрим различные случаи соотношения размеров общностей и кластеров. Пусть размер общности s не превосходит заданный максимальный размер кластеров. В этом случае естественно поставить условие, что все объекты общности должны быть включены в один и тот же кластер. Чтобы отразить это условие, введем дополнительные булевы переменные njs, j=1, …, M, удовлетворяющие условию . Значение этой переменной равно единице для кластера, в который вошла общность s. Тогда требование реализуется условием , i=1, …, K, j=1, …, M.
Если же размер общности s превосходит заданный максимальный размер кластеров, отнести все объекты общности к одному кластеру невозможно. В этом случае нужно стремиться уменьшить количество кластеров, в которые включена эта общность. Для подсчета числа таких кластеров используются признаки njs. Их сумма уже не должна быть равной единице. Если потребовать выполнения неравенств , то равна числу кластеров, в которые вошли объекты из общности s. Эта величина подлежит минимизации. С учетом требования минимизации общего числа кластеров приходим к задаче векторной оптимизации, которая решается методом ПРИНН. При этом в процессе решения используем готовый свободно распространяемый пакет для решения задач целочисленного и смешанного целочисленного линейного программирования LP_Solve.
Информационная система
Система реализована на языке C# с использованием технологии ASP.NET, СУБД SQL Server 2005 и размещена на портале www.sciyouth.ru. Основными функциональными режимами системы являются следующие.
Мониторинг учебной деятельности: выбор информации (курс, группа, дисциплина), ввод информации (отметка о посещении занятия, отметка о полученной оценке), расчеты (рейтинг студента на текущей неделе, процент успеваемости по дисциплине), представление информации (учебные планы, содержание лабораторных работ, контрольные точки).
Мониторинг творческой активности: журнал исследовательских работ (экран хода выполнения, сводная ведомость, журнал творческих работ, контроль выставления оценок), оценка научной квалификации (история оценок, оценка на основе 15 критериев, анализ ответов).
Мониторинг внеучебной деятельности: ввод достижения любым зарегистрированным пользователем, оценка достижения ответственным пользователем, доска почета и портфолио студентов.
Комплексная оценка деятельности студента: расчет и визуализация комплексного рейтинга, расчет и визуализация кривых роста (выбор курса, группы, студента).
Результаты применения технологии
Разработанная технология внедрена на факультете информационных систем и технологий (ФИСТ) в Самарском государственном архитектурно-строительном университете (СГАСУ). Системой охвачены 42 дисциплины, она содержит около 50 подрежимов. На систему ориентировано управление всей учебно-воспитательной работой на факультете. В среднем количество обращений к порталу в сутки около полусотни.
Основной характеристикой эффективности управления учебно-воспитательным процессом на основе разработанной технологии является динамика комплексной оценки студентов в семестре, представленная на рисунке 5. Видно, что после начала занятий значение комплексной оценки падает, это становится заметно органам принятия решений, и в результате проведения определенных мероприятий (беседы по выяснению причин, организация дополнительных занятий и т.п.) ситуация в большинстве случаев начинает выправляться.
Для проведения исследования по эффективности управления учебной деятельностью приведем сравнительный анализ результатов успеваемости по итогам сессии на различных факультетах СГАСУ. В таблице показано превышение (в процентах) результатов ФИСТ над результатами других технических факультетов.
Факультет
|
Абсолютная успеваемость, %
|
Качественная успеваемость, %
|
2009 г.
|
2010 г.
|
2009 г.
|
2010 г.
|
ИЭФ
|
25
|
21
|
-8
|
3
|
ФПГС
|
32
|
33
|
4
|
11
|
ФТГС
|
24
|
11
|
-1
|
-5
|
ФИСПОС
|
37
|
24
|
7
|
9
|
СТФ
|
25
|
10
|
5
|
14
|
Использование разработанной технологии управления исследовательской деятельностью студентов под руководством преподавателей приводит к значительному повышению уровня сформированности их компетенций. На рисунке 6 показаны уровни сформированности компетенций по 9 функциям исследовательской деятельности (их среднее значение по балльной шкале) для студентов 1-го и 4-го курсов.
Студенты ФИСТ значительно опережают студентов других факультетов по всем показателям внеучебной деятельности. Число студентов факультета, получивших в 2009 г. и в первом полугодии 2010 г. единовременные стипендии ученого совета за успехи в учебе, спорте и общественной работе, составило соответственно 33 % и 26 %, в то время как на других факультетах оно составило максимально 20 %.
Важно, что использование разработанной информационной технологии все более положительно воспринимается студентами и их родителями. В феврале 2010 г. был проведен анонимный опрос студентов ФИСТ (с 1-го по 4-й курсы). Его результаты сравнили с результатами аналогичного анонимного опроса, проведенного в 2007 г. Сравнение показало, что степень одобрения студентами системы с некоторыми замечаниями выросла с 65 % до 74 %. Процент студентов, регулярно интересующихся результатами мониторинга через Интернет и на информационной доске, вырос с 27 до 84. Доля студентов, регулярно интересующихся результатами мониторинга через Интернет или на информационной доске, близка к 100 %. По-прежнему результатами мониторинга интересуются порядка 50 % родителей, причем доля роди- телей, самостоятельно использующих для этого Интернет, выросла с 9,5 % до 24 %; 72 % студентов считают, что рейтинг стимулирует своевременную сдачу лабораторных и практических работ (в 2007 г. их было 47,6 %).
Таким образом, разработанная технология комплексного управления учебной и внеучебной деятельностью студентов в вузе приводит к существенному повышению эффективности их учебной деятельности (практически 100-процентная успеваемость), к творческому росту и активизации внеучебной деятельности.
Литература
1. Пиявский С.А. Математическое моделирование управляемого развития научных способностей // Изв. АН: сер. Теория и системы управления. 2000. № 3. С. 100–106.
2. Ларичев О.И. Теория и методы принятия решений. М.: Логос, 2000. 296 с.
3. Камальдинова З.Ф., Пиявский С.А. Информационно-аналитическая система комплексного мониторинга развития студентов в условиях телекоммуникационной среды // ИКТ. 2007. Т. 5. № 4. С. 101–105.
4. Камальдинова З.Ф., Пиявский С.А. Управление учебной и внеучебной деятельностью студента в вузе на основе информационно-коммуникационных технологий // Перспективные информационные технологии для авиации и космоса (ПИТ-2010): тр. Междунар. конф. с элементами науч. школы для молод. Самара, 2010. С. 204–208.